cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216153 The partial products of a(n) are the distinct values of the exponential of the von Mangoldt function modified by restricting the divisors to prime divisors (A205957).

This page as a plain text file.
%I A216153 #19 Mar 13 2018 04:09:32
%S A216153 1,2,6,4,3,10,24,14,15,8,54,40,21,22,96,5,26,9,56,900,16,33,34,35,216,
%T A216153 38,39,160,1764,88,135,46,384,7,250,51,104,486,55,224,57,58,7200,62,
%U A216153 189,32,65,4356,136,69,4900,864,74,375,152,77,6084,640,27,82
%N A216153 The partial products of a(n) are the distinct values of the exponential of the von Mangoldt function modified by restricting the divisors to prime divisors (A205957).
%C A216153 The partial products of a(n) are A216152(n) which are the distinct values of the 'prime lcm(n)' A205957.
%C A216153 Let b(n) denote the nonprime numbers A018252(n).
%C A216153 If n = 1 then a(n) = b(n) = 1
%C A216153 else if a(n) < b(n) then
%C A216153 a(n) is a cototient of consecutive pure powers of primes (A053211),
%C A216153 b(n) is a prime power with exponent > 1 (A025475),
%C A216153 b(n)/a(n) is a prime root of n-th nontrivial prime power (A025476);
%C A216153 else if a(n) > b(n) then
%C A216153 b(n) is a number which is neither a prime power nor a semiprime (A102467);
%C A216153 else if a(n) = b(n) then
%C A216153 a(n) is the product of two distinct primes (A006881).
%H A216153 Vincenzo Librandi, <a href="/A216153/b216153.txt">Table of n, a(n) for n = 1..1000</a>
%H A216153 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/VonMangoldtTransformation">The von Mangoldt Transformation.</a>
%F A216153 a(n) = A205957(A018252(n))/A205957(A018252(n-1)) for n > 1, a(1) = 1.
%t A216153 A205957[n_] := Exp[-Sum[ MoebiusMu[p]*Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; nonPrime[1] = 1; nonPrime[n_] := Which[k0 = k /. FindRoot[ n + PrimePi[k] == k , {k, n}] // Floor; n+PrimePi[k0] == k0, k0 , n+PrimePi[k0+1] == k0+1, k0+1, n+PrimePi[k0+2] == k0+2, k0+2, True, k0]; a[1] = 1; a[n_] := A205957[nonPrime[n]] / A205957[nonPrime[n-1]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jun 27 2013 *)
%o A216153 (Sage)
%o A216153 def A216153(n):
%o A216153     if n == 1 : return 1
%o A216153     return A205957(A018252(n))/A205957(A018252(n-1))
%Y A216153 Cf. A205957, A205959, A216152.
%K A216153 nonn,easy
%O A216153 1,2
%A A216153 _Peter Luschny_, Sep 02 2012