This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216154 #22 Mar 17 2020 14:21:20 %S A216154 1,1,1,3,4,1,11,21,9,1,53,128,78,16,1,309,905,710,210,25,1,2119,7284, %T A216154 6975,2680,465,36,1,16687,65821,74319,35035,7945,903,49,1,148329, %U A216154 660064,857836,478464,133630,19936,1596,64,1,1468457,7275537,10690812,6879684,2279214,419958,44268,2628,81,1 %N A216154 Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255. %F A216154 Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+(1+2*k)*T(n-1,k)+(k+1)*(k+2)*T(n-1,k+1). %F A216154 Let Z(n, k) = Sum_{j=0..n} C(-j, -n)*L(j, k) where L denotes the unsigned Lah numbers A271703. Then T(n, k) = Z(n+1, k+1). - _Peter Luschny_, Apr 13 2016 %e A216154 1, %e A216154 1, 1, %e A216154 3, 4, 1, %e A216154 11, 21, 9, 1, %e A216154 53, 128, 78, 16, 1, %e A216154 309, 905, 710, 210, 25, 1, %e A216154 2119, 7284, 6975, 2680, 465, 36, 1, %e A216154 16687, 65821, 74319, 35035, 7945, 903, 49, 1, %e A216154 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, %p A216154 A216154 := proc(n,k) local L, Z; %p A216154 L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)): %p A216154 Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n); %p A216154 Z(n+1, k+1) end: %p A216154 seq(seq(A216154(n,k), k=0..n), n=0..9); # _Peter Luschny_, Apr 13 2016 %t A216154 T[0, 0] = 1; T[0, _] = 0; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[_, _] = 0; %t A216154 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 02 2019 *) %o A216154 (Sage) %o A216154 def A216154_triangle(dim): %o A216154 M = matrix(ZZ,dim,dim) %o A216154 for n in (0..dim-1): M[n,n] = 1 %o A216154 for n in (1..dim-1): %o A216154 for k in (0..n-1): %o A216154 M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1] %o A216154 return M %o A216154 A216154_triangle(9) %Y A216154 A000255 (col. 0), A110450 (diag. n,n-2). %Y A216154 Cf. A111596, A271703. %K A216154 nonn,tabl %O A216154 0,4 %A A216154 _Peter Luschny_, Sep 19 2012