This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216166 #15 Sep 08 2022 08:46:03 %S A216166 1,121,343,361,533,637,793,889,943,1183,3013,3223,3353,3403,3757,3827, %T A216166 3893,4313,4543,4963,8653,10423,14257,20339,23083,23419,30917,33031, %U A216166 33101,33323,33433,33701,33821,34333,34393,35453,36437,36533,39137,39247,42869,43337 %N A216166 Composite numbers and 1 which yield a prime whenever a 3 is inserted anywhere in them (including at the beginning or end). %H A216166 Paolo P. Lava, <a href="/A216166/b216166.txt">Table of n, a(n) for n = 1..150</a> %e A216166 3827 is not prime but 38273, 38237, 38327 and 33827 are all primes. %p A216166 with(numtheory); %p A216166 A216166:=proc(q,x) %p A216166 local a,b,c,i,n,ok; %p A216166 for n from 1 to q do %p A216166 if not isprime(n) then %p A216166 a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; %p A216166 for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; %p A216166 if not isprime(c) then ok:=0; break; fi; %p A216166 od; %p A216166 if ok=1 then print(n); fi; %p A216166 fi; %p A216166 od; end: %p A216166 A216166(1000,3); %t A216166 ap3Q[n_]:=CompositeQ[n]&&AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ n],3,k],{k,IntegerLength[n]+1}],PrimeQ]; Join[{1},Select[Range[ 44000], ap3Q]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 25 2020 *) %o A216166 (Magma) [n: n in [1..50000] | not IsPrime(n) and forall{m: t in [0..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+3)*10^t+n mod 10^t}]; // _Bruno Berselli_, Sep 03 2012 %Y A216166 Cf. A068673, A068674, A068677, A068679, A069246, A215417, A215419-A215421, A216165, A216167-A216169. %K A216166 nonn,base %O A216166 1,2 %A A216166 _Paolo P. Lava_, Sep 03 2012