This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216182 #13 Nov 19 2021 04:41:41 %S A216182 1,3,1,5,7,1,7,25,11,1,9,63,61,15,1,11,129,231,113,19,1,13,231,681, %T A216182 575,181,23,1,15,377,1683,2241,1159,265,27,1,17,575,3653,7183,5641, %U A216182 2047,365,31,1,19,833,7183,19825,22363,11969,3303,481,35,1 %N A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2). %C A216182 Triangle formed of odd-numbered columns of the Delannoy triangle A008288. %H A216182 G. C. Greubel, <a href="/A216182/b216182.txt">Rows n = 0..50 of the triangle, flattened</a> %F A216182 T(2n, n) = A108448(n+1). %F A216182 Sum_{k=0..n} T(n,k) = A073717(n+1). %F A216182 From _G. C. Greubel_, Nov 19 2021: (Start) %F A216182 T(n, k) = A008288(n+k+1, 2*k+1). %F A216182 T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End) %e A216182 Triangle begins %e A216182 1; %e A216182 3, 1; %e A216182 5, 7, 1; %e A216182 7, 25, 11, 1; %e A216182 9, 63, 61, 15, 1; %e A216182 11, 129, 231, 113, 19, 1; %e A216182 13, 231, 681, 575, 181, 23, 1; %e A216182 15, 377, 1683, 2241, 1159, 265, 27, 1; %e A216182 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1; %e A216182 ... %t A216182 A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2]; %t A216182 Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 19 2021 *) %o A216182 (Sage) %o A216182 def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) ) %o A216182 flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Nov 19 2021 %Y A216182 Cf. (columns:) A005408, A001845, A001847, A001849, A008419. %Y A216182 Cf. Diagonals: A000012, A004767, A060820. %Y A216182 Cf. A008288 (Delannoy triangle), A114123 (even-numbered columns of A008288). %K A216182 nonn,tabl %O A216182 0,2 %A A216182 _Philippe Deléham_, Mar 11 2013