This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216187 #14 Jun 07 2021 12:35:22 %S A216187 0,1,2,6,28,200,1926,22512,306104,4770432,84234250,1663735040, %T A216187 36320155092,867963393024,22535294920334,631718010255360, %U A216187 19016907901995376,611869203759792128,20954324710009221138,761015341362413371392,29214930870257449355660 %N A216187 Number of labeled rooted trees on n nodes such that each internal node has an odd number of children. %H A216187 Alois P. Heinz, <a href="/A216187/b216187.txt">Table of n, a(n) for n = 0..150</a> %F A216187 E.g.f. satisfies: F(x) = x*(sinh(F(x))+1). %F A216187 a(n) ~ sqrt(s/(s-r)) * n^(n-1) / (exp(n) * r^n), where r = 0.482309923717218507261475229723265094762759829863... and s = 1.358310572965774067065006624540704170183889018218... are real roots of the system of equations s = r*(1 + sinh(s)), r*cosh(s) = 1. - _Vaclav Kotesovec_, Jun 07 2021 %e A216187 a(5) = 200: There are three unlabeled rooted trees of 5 nodes with all internal nodes having an odd number of children. They can be labeled respectively in 20 + 120 + 60 = 200 ways. %e A216187 ..o............o............o.... %e A216187 ..|............|.........../|\... %e A216187 ..o............o..........o.o.o.. %e A216187 ./|\...........|..........|...... %e A216187 o.o.o..........o..........o...... %e A216187 ...............|................. %e A216187 ...............o................. %e A216187 ...............|................. %e A216187 ...............o................. %p A216187 a:= n-> n!*coeff(series(RootOf(F=x*(sinh(F)+1), F), x, n+1), x, n): %p A216187 seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 12 2013 %t A216187 nn=12; f[x_]:=Sum[a[n]x^n/n!, {n,0,nn}]; s=SolveAlways[0==Series[f[x]-x (Sinh[f[x]]+1), {x,0,nn}], x]; Table[a[n], {n,0,nn}]/.s %Y A216187 Cf. A036778. %K A216187 nonn %O A216187 0,3 %A A216187 _Geoffrey Critzer_, Mar 11 2013