cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216188 Number of unordered pairs of anagrammatic (positive) integers adding to n.

This page as a plain text file.
%I A216188 #30 Oct 30 2023 07:32:41
%S A216188 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,
%T A216188 0,1,0,1,0,1,0,1,0,2,0,1,0,1,0,1,0,1,0,1,2,1,0,1,0,1,0,1,0,1,0,3,0,1,
%U A216188 0,1,0,1,0,1,0,1,3,1,0,1,0,1,0,1,0,1,0
%N A216188 Number of unordered pairs of anagrammatic (positive) integers adding to n.
%C A216188 Two positive integers are here defined as "anagrammatic" if (in base 10) they have the same number of 0 digits, 1 digits, 2 digits, ..., 9 digits. Thus, 123 and 231 are anagrammatic, but not 301 and 013, as leading zeros are omitted.
%H A216188 Christian Schulz, <a href="/A216188/b216188.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%e A216188 For n = 88, the a(88) = 4 pairs are {17,71}, {26,62}, {35,53}, and {44,44}. For n = 609, the a(609) = 1 pair is {237,372}.
%p A216188 getDigit := (n,k) -> floor(n/10^k) mod 10; getMaxDigit := n -> floor(log10(n)) + 1; getDigitMultiset := n -> convert([seq(getDigit(n,k),k=0..getMaxDigit(n)-1)],multiset); isAnagram := (m,n) -> evalb(getDigitMultiset(m) = getDigitMultiset(n)); A216188 := n -> convert([seq(eval(isAnagram(k,n-k),[true=1,false=0]),k=1..floor(n/2))],`+`); seq(A216188(n),n=1..50)
%t A216188 IsAnagram[x_, y_, b_: 10] := Sort[Permutations[IntegerDigits[x, b]]] == Sort[Permutations[IntegerDigits[y, b]]]; FindAnagramSums[n_, b_: 10] := Select[Table[{k, n - k}, {k, 0, Floor[n/2]}], IsAnagram[#[[1]], #[[2]], b] &]; Table[Length[FindAnagramSums[n]], {n, 1, 200}]
%K A216188 nonn,base
%O A216188 1,44
%A A216188 _Christian Schulz_, Mar 11 2013