This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216190 #24 Apr 05 2018 22:21:18 %S A216190 3,3,4,3,4,4,4,3,4,4,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,3,4,5,5,4,4,4, %T A216190 4,4,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,5,4,5,4,4,4,4,4,4,4,4,4,4,5, %U A216190 4,5,4,4,4,5,5,4,4,4,4,4,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4 %N A216190 Abelian complexity function of tribonacci word (A080843). %C A216190 For all n, a(n) equals 3,4,5,6, or 7. %C A216190 The values 3,4,5,6, and 7 are all obtained infinitely often. %C A216190 The first 6 occurs when n=342. The first 7 occurs when n=3914. %D A216190 G. Richomme, K. Saari, L. Q. Zamboni, Balance and Abelian Complexity of the Tribonacci word, Adv. Appl. Math. 45 (2010) 212-231. %H A216190 F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1. %H A216190 Nathan Fox, <a href="/A216190/a216190.py.txt">Python code to generate sequence</a> %H A216190 Ondrej Turek, <a href="http://arxiv.org/abs/1201.2109">Abelian complexity and Abelian co-decomposition</a>, arXiv 1201:2109, Jan. 11, 2012. %H A216190 O. Turek, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html">Abelian Complexity Function of the Tribonacci Word</a>, J. Int. Seq. 18 (2015) # 15.3.4 %Y A216190 Cf. A080843. %K A216190 nonn,easy %O A216190 1,1 %A A216190 _Nathan Fox_, Mar 11 2013