cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216200 Number of disjoint trees that appear while iterating the sum of divisors function up to n.

This page as a plain text file.
%I A216200 #35 Nov 22 2019 02:33:38
%S A216200 1,2,2,2,3,3,3,3,4,5,6,5,5,5,5,6,7,6,7,7,8,9,10,8,9,10,11,11,12,12,11,
%T A216200 10,11,12,13,13,14,14,14,14,15,13,14,14,15,16,17,15,16,17,18,19,20,19,
%U A216200 20,19,19,20,21,19,20,20,20,21,22,23,24,24,25,26,27
%N A216200 Number of disjoint trees that appear while iterating the sum of divisors function up to n.
%C A216200 A tree like (2, 3, 4, 7, 8) contains all numbers below 8 such that iterating the sum of divisors function to any of them, while staying below 8, will lead to 8.
%C A216200 Inspired by the article in link, where a (p1, p2, p3)-tree is defined with p1 the smallest number in the tree, and p2, p3, such that all sequences {sigma^i(n)} (iterations of sigma), with p1 <= n <= p2 and sigma^i(n) < p3 have nonempty intersection with {sigma^i(p1)}. For instance, 21 (p1, 200, 10^10)-trees and 64 (p1, 1000, 10^100)-trees were found.
%H A216200 M. F. Hasler, <a href="/A216200/b216200.txt">Table of n, a(n) for n = 1..10000</a>
%H A216200 G. L. Cohen and H. J. J. te Riele, <a href="http://projecteuclid.org/euclid.em/1047565640">Iterating the sum-of-divisors function</a>, Experimental Mathematics, 5 (1996), pp. 93-100.
%F A216200 For n > 1, a(n) = a(n-1) + 1 - A054973(n), a(1) = 1. - _Michel Marcus_, Oct 22 2013
%F A216200 It appears that a(n)/n = 0.32721... + O(1/sqrt(n)). - M. F. Hasler, Nov 19 2019
%e A216200 For n=23, there are 10 disjoint trees: (1), (2, 3, 4, 7, 8, 15), (5, 6, 11, 12), (9, 13, 14), (10, 17, 18), (16), (19, 20), (21), (22), (23). With the arrival of 24, 3 trees are united, that is those that contain 15, 14 and 23, so that there are now 8 trees.
%e A216200 Some further values: a(100) = 33, a(500) = 167, a(1000) = 333.
%e A216200 Further values: a(10^4) = 3282, a(10^5) = 32739, a(10^6) = 327165, a(10^7) = 3272134. - _M. F. Hasler_, Nov 19 2019
%o A216200 From _M. F. Hasler_, Nov 19 2019: (Start)
%o A216200 (PARI)
%o A216200 A216200_vec(N)={my(C=Map(), s, c); vector(N, n, mapisdefined(C,n)&& c+=mapget(C,n) + mapdelete(C,n); mapput(C, s=sigma(n), if(mapisdefined(C,s), mapget(C,s))+1); n-c)} \\ Use allocatemem() for N >= 10^6.
%o A216200 A216200(n)={my(C=Map(), s); n-sum(n=2,n, mapput(C, s=sigma(n), if(mapisdefined(C,s), mapget(C,s))+1); if(mapisdefined(C,n), mapget(C,n) + mapdelete(C,n)))} \\ (slightly faster to compute a single value)
%o A216200 tree(n)=[n,if(n>1,apply(self,invsigma(n)),"fixed point")] \\ to create the tree rooted in n. (End)
%Y A216200 Cf. A000203.
%Y A216200 Cf. A257669, A257670: size and smallest number of subtree rooted at n.
%K A216200 nonn
%O A216200 1,2
%A A216200 _Michel Marcus_, Mar 12 2013