This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216202 #21 Jun 19 2021 04:01:31 %S A216202 22307,39251,81569,85853,132763,159233,179849,188029,281431,370949, %T A216202 373393,421741,480587,607363,630737,741721,770669,782011,812527, %U A216202 879743,909917,928703,1008263,1037347,1095859,1111091,1126897,1173631,1260911,1382681,1398781,1439447 %N A216202 Primes p=prime(i) of level (1,7), i.e., such that A118534(i) = prime(i-7). %C A216202 If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k). %H A216202 Fabien Sibenaler, <a href="/A216202/b216202.txt">Table of n, a(n) for n = 1..10000</a> %e A216202 81569 = prime(7980) is a term because: %e A216202 prime(7981) = 81611, prime(7973) = 81527; %e A216202 2*prime(7980) - prime(7981) = prime(7973). %t A216202 With[{m = 7}, Prime@ Select[Range[m + 1, 10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* _Michael De Vlieger_, Jul 16 2017 *) %Y A216202 Subsequence of A125830 and A162174. %Y A216202 Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404, A125565, A125572, A125574, A125576, A125623. %K A216202 nonn %O A216202 1,1 %A A216202 _Fabien Sibenaler_, Mar 12 2013