This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216204 #30 Jun 19 2021 04:54:22 %S A216204 259033,308153,343831,377393,576227,597697,780733,990397,1408889, %T A216204 1643893,1648613,1678777,1910179,1942207,2045377,2049191,2073403, %U A216204 2388703,2403701,2430611,2448883,2481517,2572529,2710457,2827687,2982697,3376859,3404579,3942413,4119419 %N A216204 Primes p=prime(i) of level (1,8), i.e., such that A118534(i) = prime(i-8). %C A216204 If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k). %C A216204 Subsequence of A125830 and of A162174. %H A216204 Fabien Sibenaler, <a href="/A216204/b216204.txt">Table of n, a(n) for n = 1..10000</a> %e A216204 343831 = prime(24490) is a term because: %e A216204 prime(24491) = 343891, prime(24382) = 343771; %e A216204 2*prime(24490) - prime(24491) = prime(24382). %t A216204 With[{m = 8}, Prime@ Select[Range[m + 1, 2*10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* _Michael De Vlieger_, Jul 16 2017 *) %o A216204 (PARI) lista(nn) = my(v=primes(9)); forprime(p=29, nn, if(2*v[9]-p==v[1], print1(v[9], ", ")); v=concat(v[2..9], p)); \\ _Jinyuan Wang_, Jun 18 2021 %Y A216204 Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404, A125565, A125572, A125574, A125576, A125623. %K A216204 nonn %O A216204 1,1 %A A216204 _Fabien Sibenaler_, Mar 12 2013