cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216217 Smallest k such that 6^n - 2*k*3^n - 1 and 6^n - 2*k*3^n + 1 are twin primes or 0 if no solution, n > 1.

This page as a plain text file.
%I A216217 #20 Jan 30 2020 06:49:10
%S A216217 1,2,3,0,3,11,33,9,26,6,34,138,51,19,33,246,66,31,167,73,13,716,138,
%T A216217 148,138,339,447,41,131,41,9,178,778,337,543,2154,213,1216,454,183,
%U A216217 678,442,157,381,297,1476,54,1201,1942,1566,572,3708,3261,3672,1087,306
%N A216217 Smallest k such that 6^n - 2*k*3^n - 1 and 6^n - 2*k*3^n + 1 are twin primes or 0 if no solution, n > 1.
%C A216217 Conjecture: there is only one zero term: a(5) = 0.
%C A216217 The PFGW script computes 2*a(n).
%H A216217 Pierre CAMI, <a href="/A216217/b216217.txt">Table of n, a(n) for n = 2..400</a>
%e A216217 6^2 - 2*1*3^2 - 1 = 17, 17 and 19 twin primes so a(2)=1.
%e A216217 6^3 - 2*2*3^3 - 1 = 107, 107 and 109 twin primes so a(3)=2.
%e A216217 6^4 - 2*3*3^4 - 1 = 809, 809 and 811 twin primes so a(4)=3.
%e A216217 6^5 - 2*k*3^5 - 1 and 6^5 - 2*k*3^5 + 1 for k=1 to 30 have no twin prime solution so a(5)=0.
%t A216217 Table[k = 0; While[k++; p = 6^n - 2*k*3^n - 1; p > 0 && ! (PrimeQ[p] && PrimeQ[p + 2])]; If[p <= 0, 0, k], {n, 2, 50}] (* _T. D. Noe_, Mar 15 2013 *)
%o A216217 (PFGW & Scriptify)
%o A216217 PFGW64 -lout.txt -f in.txt
%o A216217 in.txt file :
%o A216217 SCRIPT
%o A216217 DIM k
%o A216217 DIM n,1
%o A216217 DIMS t
%o A216217 LABEL loop1
%o A216217 SET n,n+1
%o A216217 IF n>400 THEN END
%o A216217 SET k,0
%o A216217 LABEL loop2
%o A216217 SET k,k+2
%o A216217 SETS t,%d,%d\,;n;k
%o A216217 PRP 6^n-k*3^n-1,t
%o A216217 IF ISPRP THEN GOTO a
%o A216217 GOTO loop2
%o A216217 LABEL a
%o A216217 SETS t,%d,%d\,;n;k
%o A216217 PRP 6^n-k*3^n+1,t
%o A216217 IF ISPRP THEN GOTO loop1
%o A216217 GOTO loop2
%Y A216217 Cf. A205322 (similar, but powers of 2).
%K A216217 nonn
%O A216217 2,2
%A A216217 _Pierre CAMI_, Mar 13 2013