cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216224 Natural growth of an aliquot sequence driven by a perfect number 2^(p-1)*((2^p)-1), but starting at 27.

This page as a plain text file.
%I A216224 #17 Nov 14 2013 03:30:14
%S A216224 27,53,55,89,91,133,187,245,439,441,1041,1743,3633,7503,13329,25203,
%T A216224 44429,66547,76813,90803,90805,167243,187957,280907,332005,499739,
%U A216224 499741,600995,841405,1177979,1392181,1977419,1992661,2398187,3062293,3600363,6739253,7507147
%N A216224 Natural growth of an aliquot sequence driven by a perfect number 2^(p-1)*((2^p)-1), but starting at 27.
%C A216224 Quote from the abstract of the article by te Riele: "In this note, the existence of an aliquot sequence with more than 5092 monotonically increasing even terms is proved". The author uses the perfect number corresponding to the Mersenne prime 2^p-1 with p=19937 (whereas the script below only uses p=521).
%H A216224 H. J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-1973-0325522-5">A note on the Catalan-Dickson conjecture</a>, Math. Comp. 27 (1973), 189-192.
%o A216224 (PARI) lista(p=521, nb) = {perf = 2^(p-1)*(2^p-1); a = 27*perf; print1(a/perf, ", "); for (i=1, nb, a = sigma(a) - a; print1(a/perf, ", "); if (gcd(a/perf, p) != 1, return()););} \\ _Michel Marcus_, Mar 13 2013
%Y A216224 Cf. A146556, A215778.
%K A216224 nonn
%O A216224 1,1
%A A216224 _Michel Marcus_, Mar 13 2013