This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216228 #16 Mar 17 2013 04:18:51 %S A216228 1,1,0,1,1,0,0,2,0,0,0,2,2,0,0,0,0,4,0,0,0,0,0,4,4,0,0,0,0,0,0,8,0,0, %T A216228 0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0, %U A216228 0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,32,32 %N A216228 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=3, T(0,0) = T(0,1) = T(0,2) = 1, T(n,k) = T(n-1,k) + T(n,k-1). %C A216228 An arithmetic hexagon of E. Lucas. %D A216228 E. Lucas, Théorie des nombres, Albert Blanchard, Paris 1958, Tome 1, p.89 %H A216228 E. Lucas, <a href="http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&O=NUMM-29021">Théorie des nombres</a>, Tome 1, Jacques Gabay, Paris, 1991, p.89 %F A216228 T(n,n) = A011782(n). %F A216228 T(n,n+1) = T(n,n+2) = 2^n = A000079(n). %F A216228 Sum_{k, 0<=k<=n} T(n-k,k) = A016116(n). %F A216228 Sum_{n, n>=0} T(n,k) = A084215(k). %F A216228 Sum_{k, k>=0} T(n,k) = A084215(n+1), n>=1. %e A216228 Square array begins: %e A216228 1, 1, 1, 0, 0, 0, 0, 0, ... row n=0 %e A216228 0, 1, 2, 2, 0, 0, 0, 0, ... row n=1 %e A216228 0, 0, 2, 4, 4, 0, 0, 0, ... row n=2 %e A216228 0, 0, 0, 4, 8, 8, 0, 0, ... row n=3 %e A216228 0, 0, 0, 0, 8, 16, 16, 0, ... row n=4 %e A216228 0, 0, 0, 0, 0, 16, 32, 32, ... row n=5 %e A216228 ... %Y A216228 Cf. A000079, A011782, A016116, A068914, A084215. %K A216228 nonn,tabl %O A216228 0,8 %A A216228 _Philippe Deléham_, Mar 13 2013