cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

This page as a plain text file.
%I A216232 #27 Nov 17 2018 12:00:04
%S A216232 1,1,1,1,2,1,1,3,3,0,1,4,6,3,0,0,5,10,9,0,0,0,5,15,19,9,0,0,0,0,20,34,
%T A216232 28,0,0,0,0,0,20,54,62,28,0,0,0,0,0,0,74,116,90,0,0,0,0,0,0,0,74,190,
%U A216232 206,90,0,0,0,0,0,0,0,0,264,396,296,0,0,0,0,0,0,0,0,0,264,660,692,296,0,0,0,0,0
%N A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
%C A216232 Arithmetic hexagon of E. Lucas.
%D A216232 E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89.
%H A216232 E. Lucas, <a href="https://archive.org/details/thoriedesnombre00lucagoog/page/n119">Théorie des nombres</a>, Gauthier-Villars, Paris 1891, Tome 1, p. 89.
%F A216232 T(n,n) = A094817(n), for n > 0.
%F A216232 T(n+1,n) = T(n+2,n) = A094803(n).
%F A216232 T(n,n+1) = A007052(n).
%F A216232 T(n,n+2) = A094821(n+1).
%F A216232 T(n,n+3) = T(n,n+4) = A094806(n).
%F A216232 Sum_{k=0..n} T(n-k,k) = A217730(n). - _Philippe Deléham_, Mar 22 2013
%e A216232 Square array begins:
%e A216232   1, 1, 1,  1,  1,   0,   0,   0,   0,   0, 0, ... row n=0
%e A216232   1, 2, 3,  4,  5,   5,   0,   0,   0,   0, 0, ... row n=1
%e A216232   1, 3, 6, 10, 15,  20,  20,   0,   0,   0, 0, ... row n=2
%e A216232   0, 3, 9, 19, 34,  54,  74,  74,   0,   0, 0, ... row n=3
%e A216232   0, 0, 9, 28, 62, 116, 190, 264, 264,   0, 0, ... row n=4
%e A216232   0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5
%e A216232   ...
%e A216232 Array, read by rows, with 0 omitted:
%e A216232    1,   1,   1,   1,    1
%e A216232    1,   2,   3,   4,    5,    5
%e A216232    1,   3,   6,  10,   15,   20,   20
%e A216232         3,   9,  19,   34,   54,   74,   74
%e A216232              9,  28,   62,  116,  190,  264,  264
%e A216232                  28,   90,  206,  396,  660,  924,  924
%e A216232                        90,  296,  692, 1352, 2276, 3200, 3200
%e A216232   ...
%Y A216232 Cf. A007052, A094803, A094806, A094817, A094821
%Y A216232 Cf. similar sequences: A216201, A216210, A216216, A216218, A216219, A216220, A216226, A216228, A216229, A216230.
%K A216232 nonn,tabl
%O A216232 0,5
%A A216232 _Philippe Deléham_, Mar 14 2013