This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216232 #27 Nov 17 2018 12:00:04 %S A216232 1,1,1,1,2,1,1,3,3,0,1,4,6,3,0,0,5,10,9,0,0,0,5,15,19,9,0,0,0,0,20,34, %T A216232 28,0,0,0,0,0,20,54,62,28,0,0,0,0,0,0,74,116,90,0,0,0,0,0,0,0,74,190, %U A216232 206,90,0,0,0,0,0,0,0,0,264,396,296,0,0,0,0,0,0,0,0,0,264,660,692,296,0,0,0,0,0 %N A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1). %C A216232 Arithmetic hexagon of E. Lucas. %D A216232 E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89. %H A216232 E. Lucas, <a href="https://archive.org/details/thoriedesnombre00lucagoog/page/n119">Théorie des nombres</a>, Gauthier-Villars, Paris 1891, Tome 1, p. 89. %F A216232 T(n,n) = A094817(n), for n > 0. %F A216232 T(n+1,n) = T(n+2,n) = A094803(n). %F A216232 T(n,n+1) = A007052(n). %F A216232 T(n,n+2) = A094821(n+1). %F A216232 T(n,n+3) = T(n,n+4) = A094806(n). %F A216232 Sum_{k=0..n} T(n-k,k) = A217730(n). - _Philippe Deléham_, Mar 22 2013 %e A216232 Square array begins: %e A216232 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0 %e A216232 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ... row n=1 %e A216232 1, 3, 6, 10, 15, 20, 20, 0, 0, 0, 0, ... row n=2 %e A216232 0, 3, 9, 19, 34, 54, 74, 74, 0, 0, 0, ... row n=3 %e A216232 0, 0, 9, 28, 62, 116, 190, 264, 264, 0, 0, ... row n=4 %e A216232 0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5 %e A216232 ... %e A216232 Array, read by rows, with 0 omitted: %e A216232 1, 1, 1, 1, 1 %e A216232 1, 2, 3, 4, 5, 5 %e A216232 1, 3, 6, 10, 15, 20, 20 %e A216232 3, 9, 19, 34, 54, 74, 74 %e A216232 9, 28, 62, 116, 190, 264, 264 %e A216232 28, 90, 206, 396, 660, 924, 924 %e A216232 90, 296, 692, 1352, 2276, 3200, 3200 %e A216232 ... %Y A216232 Cf. A007052, A094803, A094806, A094817, A094821 %Y A216232 Cf. similar sequences: A216201, A216210, A216216, A216218, A216219, A216220, A216226, A216228, A216229, A216230. %K A216232 nonn,tabl %O A216232 0,5 %A A216232 _Philippe Deléham_, Mar 14 2013