A216233 Numbers whose squares have 2R-1 digits, such that the number represented by leftmost R digits and number represented by rightmost R digits divide each other evenly.
245, 249, 251, 255, 264, 1245, 1249, 2490, 2498, 2502, 2510, 10984, 12490, 12498, 15449, 18735, 18751, 18868, 22714, 24980, 24996, 27907, 28302, 31225, 31249, 31579, 101852, 124996, 139535, 152174, 187494, 187510, 218751, 238165, 249992, 279070, 281249
Offset: 1
Examples
The square of 22714 is 515925796, and 51592 = 2*25796.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..165
Programs
-
Mathematica
cnt = 0; Do[p = 10^Floor[nd/2]; Do[x = Floor[n*n/p]; y = Mod[n*n, 10*p]; If[y>0 && Mod[x,y]*Mod[y,x] == 0, Print[++cnt, " ", n, " ", n*n]], {n, p, Floor[10^(nd/2)]}], {nd,3,11,2}] (* Giovanni Resta, Mar 15 2013 *)
Extensions
Missing a(25) and a(27)-a(37) from Giovanni Resta, Mar 15 2013
Comment corrected by Giovanni Resta, Mar 15 2013
Comments