This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216235 #22 Nov 18 2018 09:55:09 %S A216235 1,1,1,1,2,0,1,3,2,0,1,4,5,0,0,0,5,9,5,0,0,0,5,14,14,0,0,0,0,0,19,28, %T A216235 14,0,0,0,0,0,19,47,42,0,0,0,0,0,0,0,66,89,42,0,0,0,0,0,0,0,66,155, %U A216235 131,0,0,0,0,0,0,0,0,0,221,286,131,0,0,0,0,0,0,0,0,0,221,507,417,0,0,0,0,0,0 %N A216235 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1). %C A216235 Arithmetic hexagon of E. Lucas. %H A216235 E. Lucas, <a href="https://archive.org/details/thoriedesnombre00lucagoog/page/n119">Théorie des nombres</a>, Gauthier-Villars, Paris 1891, Tome 1, p. 89. %F A216235 T(n,n) = T(n+1,n) = A080937(n+1). %F A216235 T(n,n+1) = A094790(n+1). %F A216235 T(n,n+2) = A094789(n+1). %F A216235 T(n,n+3) = T(n,n+4) = A005021(n). %F A216235 Sum_{k=0..n} T(n-k,k) = A028495(n+1). - _Philippe Deléham_, Mar 23 2013 %e A216235 Square array begins: %e A216235 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ... row n=0 %e A216235 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, ... row n=1 %e A216235 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, ... row n=2 %e A216235 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, ... row n=3 %e A216235 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, ... row n=4 %e A216235 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, ... row n=5 %e A216235 ... %Y A216235 Cf. A005021, A080937, A094789, A094790. %Y A216235 Similar sequences: A216201, A216210, A216216, A216218, A216219, A216220, A216226, A216228, A216229, A216230, A216232. %K A216235 nonn,tabl %O A216235 0,5 %A A216235 _Philippe Deléham_, Mar 14 2013