This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216252 #15 Feb 16 2025 08:33:18 %S A216252 1,4,5,2,3,7,10,8,6,11,9,17,20,23,14,12,13,16,26,38,43,39,21,24,15,22, %T A216252 25,30,42,58,63,48,35,31,27,18,19,29,34,57,53,69,76,70,64,49,36,32,28, %U A216252 37,33,47,52,81,75,95,102,109,88,82,54,59,44,40,41,46,62 %N A216252 A213196 as table read layer by layer clockwise. %C A216252 Permutation of the natural numbers. %C A216252 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A216252 Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). %C A216252 The order of the list: %C A216252 T(1,1)=1; %C A216252 T(1,2), T(2,2), T(2,1); %C A216252 . . . %C A216252 T(1,n), T(2,n), ... T(n-1,n), T(n,n), T(n,n-1), ... T(n,1); %C A216252 . . . %H A216252 Boris Putievskiy, <a href="/A216252/b216252.txt">Rows n = 1..140 of triangle, flattened</a> %H A216252 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A216252 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">MathWorld: Pairing functions</a> %H A216252 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A216252 a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)^(i+j))/4, m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4, i=min(t; n-(t-1)^2), j=min(t; t^2-n+1), t=floor(sqrt(n-1))+1. %e A216252 The start of the sequence as table: %e A216252 1....4...3..11..13... %e A216252 2....5...7...9..16... %e A216252 6....8..10..17..26... %e A216252 12..14..23..20..38... %e A216252 15..24..21..39..43... %e A216252 . . . %e A216252 The start of the sequence as triangular array read by rows: %e A216252 1; %e A216252 4,5,2; %e A216252 3,7,10,8,6; %e A216252 11,9,17,20,23,14,12; %e A216252 13,16,26,38,43,39,21,24,15; %e A216252 . . . %e A216252 Row number r contains 2*r-1 numbers. %o A216252 (Python) %o A216252 t=int((math.sqrt(n-1)))+1 %o A216252 i=min(t,n-(t-1)**2) %o A216252 j=min(t,t**2-n+1) %o A216252 m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4 %o A216252 m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4 %o A216252 m=(m1+m2-1)*(m1+m2-2)/2+m1 %Y A216252 Cf. A213196, A211377, A214928, A060734, A060736. %K A216252 nonn,tabl %O A216252 1,2 %A A216252 _Boris Putievskiy_, Mar 15 2013