This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216267 #27 Dec 28 2024 10:19:58 %S A216267 0,20,56,7140,1414910 %N A216267 Numbers that are both tetrahedral and pronic. %C A216267 Intersection of A000292 and A002378. %C A216267 The equation y*(y+1) = x*(x+1)*(x+2)/6 leads to an elliptic curve, which has a finite number of solutions, all of which are already listed. - _Max Alekseyev_, Dec 28 2024 %t A216267 t = {}; Do[tet = n (n + 1) (n + 2)/6; s = Floor[Sqrt[tet]]; If[s^2 + s == tet, AppendTo[t, tet]], {n, 0, 1000}]; t (* _T. D. Noe_, Mar 18 2013 *) %t A216267 With[{nn=50000},Intersection[Binomial[Range[0,nn]+2,3],Table[n(n+1),{n,nn}]]] (* _Harvey P. Dale_, Apr 04 2016 *) %o A216267 (Python) %o A216267 def rootPronic(a): %o A216267 sr = 1<<33 %o A216267 while a < sr*(sr+1): %o A216267 sr>>=1 %o A216267 b = sr>>1 %o A216267 while b: %o A216267 s = sr+b %o A216267 if a >= s*(s+1): %o A216267 sr = s %o A216267 b>>=1 %o A216267 return sr %o A216267 for i in range(1<<20): %o A216267 a = i*(i+1)*(i+2)//6 %o A216267 t = rootPronic(a) %o A216267 if a == t*(t+1): %o A216267 print(a) %Y A216267 Cf. A000292, A002378, A027568, A029549, A003556. %K A216267 nonn,fini,full %O A216267 1,2 %A A216267 _Alex Ratushnyak_, Mar 15 2013 %E A216267 fini, full keywords added by _Max Alekseyev_, Dec 28 2024