This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216270 #26 Apr 21 2017 10:56:40 %S A216270 1,2,5,14,69,99,495,1364,1365,2010,2735,3099,3914,4359,4389,5984,6669, %T A216270 8435,9164,10794,12075,15224,15315,16014,16470,17900,20214,20769, %U A216270 21204,23450,24240,26430,26690,27300,29099,35189,38415,38745,42944,47054,48789,50295 %N A216270 Numbers n such that n+(n+1), n^2+(n+1)^2, n+(n+1)^2, n^2+(n+1) are all prime. %D A216270 Joong Fang, Abstract Algebra, Schaum, 1963, Page 76. %H A216270 Harvey P. Dale, <a href="/A216270/b216270.txt">Table of n, a(n) for n = 1..1000</a> %e A216270 n=14: 29│ │421 %e A216270 n+(n+1)=14+(14+1)=29 14---196 %e A216270 n^2+(n+1)^2=196+225=421 │ X │ %e A216270 n+(n+1)^2=14+225=239 15---225 *15+225+1=241 %e A216270 n^2+(n+1)=196+15=211 211/ \239 %e A216270 . %e A216270 n=5: 11│ │61 %e A216270 n+(n+1)=5+(5+1)=11 5---25 %e A216270 n^2+(n+1)^2=25+36=61 │ X │ %e A216270 n+(n+1)^2=5+36=41 6---36 *6+36+1=43 %e A216270 n^2+(n+1)=25+6=31 31/ \41 %e A216270 . %e A216270 n=495: 991│ │491041 %e A216270 n+(n+1)=495+496=991 495---245025 %e A216270 n^2+(n+1)^2=491041 │ X │ %e A216270 n+(n+1)^2=246511 496---246016 %e A216270 n^2+(n+1)=245521 245521/ \246511 %e A216270 . %e A216270 They form the group: %e A216270 o 1 2 3 (i) %e A216270 1 0 3 2 %e A216270 2 3 1 0 %e A216270 3 2 0 1 %e A216270 . %e A216270 For example, for n=99: %e A216270 99 9801 0 1 2 3 (i) %e A216270 100 10000 %e A216270 9801 99 1 0 3 2 %e A216270 10000 100 %e A216270 10000 100 %e A216270 99 9801 2 3 1 0 %e A216270 100 10000 3 2 0 1 %e A216270 9801 99 %e A216270 The sum of each column and the sum of each diagonal is a prime number. %t A216270 Select[Range[51000],AllTrue[{#+(#+1),#^2+(#+1)^2,#+(#+1)^2, #^2+#+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 21 2017 *) %o A216270 (PARI) %o A216270 is(n) = { isprime(n+(n+1)) & isprime(n^2+(n+1)^2) & isprime(n+(n+1)^2) & isprime(n^2+(n+1)); } %o A216270 for(n=1,10^6, if (is(n), print1(n,", "))); %o A216270 /* _Joerg Arndt_, Mar 26 2013 */ %K A216270 nonn %O A216270 1,2 %A A216270 _César Aguilera_, Mar 15 2013