This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216274 #28 Jun 12 2023 08:47:44 %S A216274 1,1,2,1,2,3,1,2,4,4,1,2,4,7,5,1,2,4,8,11,6,1,2,4,8,15,16,7,1,2,4,8, %T A216274 16,26,22,8,1,2,4,8,16,31,42,29,9,1,2,4,8,16,32,57,64,37,10,1,2,4,8, %U A216274 16,32,63,99,93,46,11,1,2,4,8,16,32,64,120,163,130,56,12 %N A216274 Square array A(n,k) = maximal number of regions into which k-space can be divided by n hyperplanes (k >= 1, n >= 0), read by antidiagonals. %C A216274 For all fixed k, the sequences A(n,k) are "complete" (sic). %C A216274 This array is similar to A145111 with first variation at 34th term. %H A216274 Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">"Complete" sequence</a>. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023] %F A216274 A(k,n) = Sum_{i=0..k} C(n, i), k >=1, n >= 0. %e A216274 Square array A(n,k) begins: %e A216274 1, 1, 1, 1, 1, 1, ... %e A216274 2, 2, 2, 2, 2, 2, ... %e A216274 3, 4, 4, 4, 4, 4, ... %e A216274 4, 7, 8, 8, 8, 8, ... %e A216274 5, 11, 15, 16, 16, 16, ... %e A216274 6, 16, 26, 31, 32, 32, ... %e A216274 So the maximal number of pieces into which a cube can be divided after 5 planar cuts is A(5,3) = 26. %t A216274 getvalue[n_, k_] := Sum[Binomial[n, i], {i, 0, k}]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@IntegerPartitions[#1+dim-1, {dim}], 1] &, maxHeight], 1]; pairs = lexicographicLattice[{2, 12}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] %Y A216274 Cf. A000124, A000125, A059214. %K A216274 nonn,tabl %O A216274 0,3 %A A216274 _Frank M Jackson_, Mar 16 2013 %E A216274 Edited by _N. J. A. Sloane_, May 20 2023