cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216275 Fibonacci + Goldbach: a(1)=6, a(2)=8 and for n>=3, a(n)=g(a(n-1)) + g(a(n-2)), where for m>=3, g(2*m) is the maximal prime p < 2*m such that 2*m - p is prime.

This page as a plain text file.
%I A216275 #25 Mar 27 2013 14:41:43
%S A216275 6,8,8,10,12,14,18,24,32,48,72,110,174,274,438,704,1134,1830,2952,
%T A216275 4762,7698,12450,20128,32560,52660,85168,137752,222844,360564,583392,
%U A216275 943902,1527222,2471074,3998274,6469334,10467566,16936850,27404300,44341050,71745324
%N A216275 Fibonacci + Goldbach: a(1)=6, a(2)=8 and for n>=3, a(n)=g(a(n-1)) + g(a(n-2)), where for m>=3, g(2*m) is the maximal prime p < 2*m such that 2*m - p is prime.
%C A216275 Conjecture. lim a(n+1)/a(n)=phi as n goes to infinity (phi=golden ratio).
%H A216275 Peter J. C. Moses, <a href="/A216275/b216275.txt">Table of n, a(n) for n = 1..1000</a>
%F A216275 For n>=5, a(n) = A216835(n-3) + A216835(n-4).
%e A216275 Let n=6. Since a(4) = 10, a(5) = 12 and g(10) = g(12) = 7, then a(6) = 7 + 7 = 14.
%t A216275 a[1] = 6; a[2] = 8; g[n_] := Module[{tmp,k=1}, While[!PrimeQ[n-(tmp=NextPrime[n,-k])], k++]; tmp]; a[n_] := a[n] = g[a[n-1]] + g[a[n-2]]; Table[a[n], {n,1,100}]
%Y A216275 Cf. A000045, A002375, A025019, A216835.
%K A216275 nonn
%O A216275 1,1
%A A216275 _Vladimir Shevelev_, Mar 16 2013