cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216276 Fermat pseudoprimes to base 2 of the form (p^2 + 2*p)/3, where p is also a Fermat pseudoprime to base 2.

Original entry on oeis.org

997633, 1398101, 2433601, 3581761, 26474581, 37354465, 63002501, 70006021, 82268033, 93030145, 561481921, 804978721, 1231726981, 2602378721, 2942952481, 12817618945, 15516020833, 16627811905, 22016333333, 25862624705, 53707855201, 67220090785, 95074073281, 144278347201
Offset: 1

Views

Author

Marius Coman, Sep 03 2012

Keywords

Comments

The corresponding values of the Fermat pseudoprime p: 1729, 2047, 3277, 8911, 10585, 13747, 14491, 15709, 16705, 41041, 49141, 60787, 88357, 196093, 215749, 223345, 256999, 278545, 401401, 449065, 657901.
Conjecture: For any Fermat pseudoprime to base 2, p1, there exist infinitely many Fermat pseudoprimes to base 2, of the form p2 = (p1^n + n*p1)/(n+1), where n > 1.
Conjecture: For any Carmichael number c there exist infinitely many Carmichael numbers of the form (c^n + n*c)/(n + 1) with n > 1.

Crossrefs

Programs

  • PARI
    is(n)=my(s); issquare(3*n+1,&s) && Mod(2,s-1)^(s-2)==1 && !isprime(s-1) && Mod(2,n)^n==2 && n>1 \\ Charles R Greathouse IV, Jul 07 2017
    
  • PARI
    forcomposite(p=1729,1e6, n=p*(p+2)/3; if(Mod(2,p)^p==2 && Mod(2,n)^n==2, print1(n", "))) \\ Charles R Greathouse IV, Jul 07 2017

Extensions

a(3) and a(15) inserted by Charles R Greathouse IV, Jul 07 2017