cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216280 Number of nonnegative solutions to the equation x^4 + y^4 = n.

This page as a plain text file.
%I A216280 #22 Feb 22 2019 05:17:27
%S A216280 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
%T A216280 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U A216280 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N A216280 Number of nonnegative solutions to the equation x^4 + y^4 = n.
%C A216280 The first n with a(n) > 1 is 635318657 = 41 * 113 * 241 * 569, with a(635318657) = 2. Izadi, Khoshnam, & Nabardi show that for any n with a(n) > 1, the elliptic curve y^2 = x^3 - nx has rank at least 3. According to gp, y^2 = x^3 - 635318657x has analytic rank 4 (and first nonzero derivative around 35741.7839). - _Charles R Greathouse IV_, Jan 12 2017
%H A216280 Antti Karttunen, <a href="/A216280/b216280.txt">Table of n, a(n) for n = 1..16561</a>
%H A216280 F. A. Izadi, F. Khoshnam, K. Nabardi, <a href="https://arxiv.org/abs/1202.5676">Sums of two biquadrates and elliptic curves of rank ≥4</a> (2012). arXiv:1202.5676 [math.NT], 2012.
%H A216280 F. A. Izadi, F. Khoshnam, K. Nabardi, <a href="http://www.math.okayama-u.ac.jp/mjou/mjou56/_05_izadi.pdf">Sums of two biquadrates and elliptic curves of rank ≥ 4</a>, Math. J. Okayama Univ. 56 (2014), 51-63.
%t A216280 Reap[For[n = 1, n <= 1000, n++, r = Reduce[0 <= x <= y && x^4 + y^4 == n, {x, y}, Integers]; sols = Which[r === False, 0, r[[0]] == And, 1, r[[0]] == Or, Length[r], True, Print[n, " ", r]]; If[sols != 0, Print[n, " ", sols, " ", r]]; Sow[sols]]][[2, 1]] (* _Jean-François Alcover_, Feb 22 2019 *)
%o A216280 (PARI) a(n)=my(t=thue(thueinit('x^4+1,1),n)); sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1]) \\ _Charles R Greathouse IV_, Jan 12 2017
%o A216280 (PARI) first(n)=my(T=thueinit('x^4+1,1),v=vector(n),t); for(k=1,n, t=thue(T,k); v[k]=sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1])); v \\ _Charles R Greathouse IV_, Jan 12 2017
%Y A216280 Cf. A025455, A025446, A000161, A025426, A216284.
%Y A216280 Cf. A004831 (positions of nonzero terms).
%K A216280 nonn
%O A216280 1,635318657
%A A216280 _V. Raman_, Sep 03 2012
%E A216280 Offset added by _Charles R Greathouse IV_, Jan 12 2017