This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216319 #33 Oct 15 2020 16:35:47 %S A216319 1,1,1,1,3,1,3,1,5,1,3,5,1,3,5,7,1,5,7,1,3,7,9,1,3,5,7,9,1,5,7,11,1,3, %T A216319 5,7,9,11,1,3,5,9,11,13,1,7,11,13,1,3,5,7,9,11,13,15,1,3,5,7,9,11,13, %U A216319 15,1,5,7,11,13,17,1,3,5,7,9,11,13,15,17,1,3,7,9,11,13,17,19 %N A216319 Irregular triangle: row n lists the odd numbers of the reduced residue system modulo n. %C A216319 The length of row n is delta(n) = A055034(n). %C A216319 Here the smallest nonnegative complete system modulo n is used: {0,1,...,n-1}, and the reduced residue system modulo n (A038566) is the set of numbers k from this set which satisfy gcd(k, n) = 1. The present array lists only the odd numbers. For n = 1 one should take 0 because gcd(0, 1) = 1, but because 1 == 0 (mod 1) we prefer the odd 1. %C A216319 This is the sub-array obtained from A038566 by deleting the even numbers. %C A216319 In the multiplicative group Modd n (see a comment in A203571) each of the delta(n) members of row n forms a reduced residue class Modd n with only odd numbers. E.g., n=4 (only the positive members are listed, the negative members should be amended): [1] = {1, 7, 9, 15, 17, 23, 25, 31, 33, 39,...}; [3] = {3, 5, 11, 13, 19, 21, 27, 29, 35, 37...}. Multiplication Modd n can be done class-wise: 7*15 == 1*1 (Modd 4) = 1; 11*13 ==3*3 (Modd 4) = 1; 7*5 == 1*3 (Modd 4) = 3. %C A216319 The orders 'Moddulo' n of the elements in row n are given in A216320. %H A216319 Michael De Vlieger, <a href="/A216319/b216319.txt">Table of n, a(n) for n = 1..11703</a> (rows 1 <= n <= 240, flattened) %H A216319 Wolfdieter Lang, <a href="https://arxiv.org/abs/2008.04300">On the Equivalence of Three Complete Cyclic Systems of Integers</a>, arXiv:2008.04300 [math.NT], 2020. %F A216319 a(n, k) is the k-th odd member of the smallest nonnegative reduced residue system modulo n. See the comment above. %e A216319 The array starts: %e A216319 n\k 1 2 3 4 5 6 7 8 9... %e A216319 --------------------------------------- %e A216319 1 1 %e A216319 2 1 %e A216319 3 1 %e A216319 4 1 3 %e A216319 5 1 3 %e A216319 6 1 5 %e A216319 7 1 3 5 %e A216319 8 1 3 5 7 %e A216319 9 1 5 7 %e A216319 10 1 3 7 9 %e A216319 11 1 3 5 7 9 %e A216319 12 1 5 7 11 %e A216319 13 1 3 5 7 9 11 %e A216319 14 1 3 5 9 11 13 %e A216319 15 1 7 11 13 %e A216319 16 1 3 5 7 9 11 13 15 %e A216319 17 1 3 5 7 9 11 13 15 %e A216319 18 1 5 7 11 13 17 %e A216319 19 1 3 5 7 9 11 13 15 17 %e A216319 20 1 3 7 9 11 13 17 19 %e A216319 ... %t A216319 Table[Select[Range[1, n, 2], GCD[#, n] == 1 &], {n, 20}] (* _Michael De Vlieger_, Oct 15 2020 *) %o A216319 (PARI) row(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); \\ _Michel Marcus_, Jun 10 2020 %Y A216319 Cf. A038566 (row n lists all numbers in the reduced residue system modulo n). %K A216319 nonn,easy,tabf %O A216319 1,5 %A A216319 _Wolfdieter Lang_, Sep 21 2012