cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216319 Irregular triangle: row n lists the odd numbers of the reduced residue system modulo n.

This page as a plain text file.
%I A216319 #33 Oct 15 2020 16:35:47
%S A216319 1,1,1,1,3,1,3,1,5,1,3,5,1,3,5,7,1,5,7,1,3,7,9,1,3,5,7,9,1,5,7,11,1,3,
%T A216319 5,7,9,11,1,3,5,9,11,13,1,7,11,13,1,3,5,7,9,11,13,15,1,3,5,7,9,11,13,
%U A216319 15,1,5,7,11,13,17,1,3,5,7,9,11,13,15,17,1,3,7,9,11,13,17,19
%N A216319 Irregular triangle: row n lists the odd numbers of the reduced residue system modulo n.
%C A216319 The length of row n is delta(n) = A055034(n).
%C A216319 Here the smallest nonnegative complete system modulo n is used: {0,1,...,n-1}, and the reduced residue system modulo n (A038566) is the set of numbers k from this set which satisfy gcd(k, n) = 1. The present array lists only the odd numbers. For n = 1 one should take 0 because gcd(0, 1) = 1, but because 1 == 0 (mod 1) we prefer the odd 1.
%C A216319 This is the sub-array obtained from A038566 by deleting the even numbers.
%C A216319 In the multiplicative group Modd n (see a comment in A203571) each of the delta(n) members of row n forms a reduced residue class Modd n with only odd numbers. E.g., n=4 (only the positive members are listed, the negative members should be amended): [1] = {1, 7, 9, 15, 17, 23, 25, 31, 33, 39,...};  [3] = {3, 5, 11, 13, 19, 21, 27, 29, 35, 37...}. Multiplication Modd n can be done class-wise: 7*15 == 1*1 (Modd 4) = 1; 11*13 ==3*3 (Modd 4) = 1; 7*5 == 1*3 (Modd 4) = 3.
%C A216319 The orders 'Moddulo' n of the elements in row n are given in A216320.
%H A216319 Michael De Vlieger, <a href="/A216319/b216319.txt">Table of n, a(n) for n = 1..11703</a> (rows 1 <= n <= 240, flattened)
%H A216319 Wolfdieter Lang, <a href="https://arxiv.org/abs/2008.04300">On the Equivalence of Three Complete Cyclic Systems of Integers</a>, arXiv:2008.04300 [math.NT], 2020.
%F A216319 a(n, k) is the k-th odd member of the smallest nonnegative reduced residue system modulo n. See the comment above.
%e A216319 The array starts:
%e A216319 n\k 1  2   3   4   5   6   7   8   9...
%e A216319 ---------------------------------------
%e A216319 1   1
%e A216319 2   1
%e A216319 3   1
%e A216319 4   1  3
%e A216319 5   1  3
%e A216319 6   1  5
%e A216319 7   1  3   5
%e A216319 8   1  3   5   7
%e A216319 9   1  5   7
%e A216319 10  1  3   7   9
%e A216319 11  1  3   5   7   9
%e A216319 12  1  5   7  11
%e A216319 13  1  3   5   7   9  11
%e A216319 14  1  3   5   9  11  13
%e A216319 15  1  7  11  13
%e A216319 16  1  3   5   7   9  11  13  15
%e A216319 17  1  3   5   7   9  11  13  15
%e A216319 18  1  5   7  11  13  17
%e A216319 19  1  3   5   7   9  11  13  15  17
%e A216319 20  1  3   7   9  11  13  17  19
%e A216319 ...
%t A216319 Table[Select[Range[1, n, 2], GCD[#, n] == 1 &], {n, 20}] (* _Michael De Vlieger_, Oct 15 2020 *)
%o A216319 (PARI) row(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); \\ _Michel Marcus_, Jun 10 2020
%Y A216319 Cf. A038566 (row n lists all numbers in the reduced residue system modulo n).
%K A216319 nonn,easy,tabf
%O A216319 1,5
%A A216319 _Wolfdieter Lang_, Sep 21 2012