This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216320 #20 May 15 2025 05:28:00 %S A216320 1,1,1,1,2,1,2,1,2,1,3,3,1,4,4,2,1,3,3,1,4,4,2,1,5,5,5,5,1,2,2,2,1,3, %T A216320 2,6,3,6,1,3,6,3,6,2,1,4,2,4,1,8,8,4,4,8,8,2,1,8,8,8,4,8,2,4,1,6,6,3, %U A216320 3,2,1,9,9,3,9,3,9,9,9,1,4,4,2,2,4,4,2,1,3,6,2,3,6 %N A216320 Irregular triangle: row n lists the Modd n order of the odd members of the reduced smallest nonnegative residue class modulo n. %C A216320 The length of row n is delta(n):=A055034(n). %C A216320 For the multiplicative group Modd n see a comment on A203571, and also on A216319. %C A216320 A216319(n,k)^a(n,k) == +1 (Modd n), n >= 1. %C A216320 If the Modd n order of an (odd) element from row n of A216319 is delta(n) (the row length) then this element is a primitive root Modd n. There is no primitive root Modd n if no such element of order delta(n) exists. For example, n = 12, 20, ... (see A206552 for more of these n values). There are phi(delta(n)) = A216321(n) such primitive roots Modd n if there exists one, where phi=A000010 (Euler's totient). The multiplicative group Modd n is cyclic if and only if there exists a primitive root Modd n. The multiplicative group Modd n is isomorphic to the Galois group G(Q(rho(n))/Q) with the algebraic number rho(n) := 2*cos(Pi/n), n>=1. %F A216320 a(n,k) = order of A216319(n,k) Modd n, n>=1, k=1, 2, ..., A055034(n). This means: A216319(n,k)^a(n,k) == +1 (Modd n), n>=1, and a(n,k) is the smallest positive integer exponent satisfying this congruence. For Modd n see a comment on A203571. %e A216320 The table a(n,k) begins: %e A216320 n\k 1 2 3 4 5 6 7 8 9 ... %e A216320 1 1 %e A216320 2 1 %e A216320 3 1 %e A216320 4 1 2 %e A216320 5 1 2 %e A216320 6 1 2 %e A216320 7 1 3 3 %e A216320 8 1 4 4 2 %e A216320 9 1 3 3 %e A216320 10 1 4 4 2 %e A216320 11 1 5 5 5 5 %e A216320 12 1 2 2 2 %e A216320 13 1 3 2 6 3 6 %e A216320 14 1 3 6 3 6 2 %e A216320 15 1 4 2 4 %e A216320 16 1 8 8 4 4 8 8 2 %e A216320 17 1 8 8 8 4 8 2 4 %e A216320 18 1 6 6 3 3 2 %e A216320 19 1 9 9 3 9 3 9 9 9 %e A216320 20 1 4 4 2 2 4 4 2 %e A216320 ... %e A216320 a(7,2) = 3 because A216319(7,2) = 3 and 3^1 == 3 (Modd 7); %e A216320 3^2 = 9 == 5 (Modd 7) because floor(9/7)= 1 which is odd, therefore 9 (Modd 7) = -9 (mod 7) = 5; 3^3 == 5*3 (Modd n) %e A216320 = +1 because floor(15/7)=2 which is even, therefore 15 (Modd 7) = 15 (modd 7) = +1. %e A216320 Row n=12 is the first row without an order = delta(n) (row length), in this case 4. Therefore there is no primitive root Modd 12, and the multiplicative group Modd 12 is non-cyclic. %e A216320 Its cycle structure is [[5,1],[7,1],[11,1]] which is the group Z_2 x Z_2 (the Klein 4-group). %Y A216320 Cf. A203571, A216321. %K A216320 nonn,easy,tabf %O A216320 1,5 %A A216320 _Wolfdieter Lang_, Sep 21 2012