cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A216321 phi(delta(n)), n >= 1, with phi = A000010 (Euler's totient) and delta = A055034 (degree of minimal polynomials with coefficients given in A187360).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 6, 4, 2, 4, 10, 4, 4, 4, 6, 4, 6, 4, 8, 8, 4, 8, 4, 4, 6, 6, 4, 8, 8, 4, 12, 8, 4, 10, 22, 8, 12, 8, 8, 8, 12, 6, 8, 8, 6, 12, 28, 8, 8, 8, 6, 16, 8, 8, 20, 16, 10, 8, 24, 8, 12, 12, 8, 12, 8, 8, 24, 16, 18, 16, 40, 8, 16, 12
Offset: 1

Views

Author

Wolfdieter Lang, Sep 21 2012

Keywords

Comments

If n belongs to A206551 (cyclic multiplicative group Modd n) then there exist precisely a(n) primitive roots Modd n. For these n values the number of entries in row n of the table A216319 with value delta(n) (the row length) is a(n). Note that a(n) is also defined for the complementary n values from A206552 (non-cyclic multiplicative group Modd n) for which no primitive root Modd n exists.
See also A216322 for the number of primitive roots Modd n.

Examples

			a(8) = 2 because delta(8) = 4 and phi(4) = 2. There are 2 primitive roots Modd 8, namely 3 and 5 (see the two 4s in row n=8 of A216320). 8 = A206551(8).
a(12) = 2 because delta(12) = 4 and phi(4) = 2. But there is no primitive root Modd 12, because 4 does not show up in row n=12 of A216320. 12 = A206552(1).
		

Crossrefs

Cf. A000010, A055034, A216319, A216320, A216322, A010554 (analog in modulo n case).

Programs

Formula

a(n) = phi(delta(n)), n >= 1, with phi = A000010 (Euler's totient) and delta = A055034 with delta(1) = 1 and delta(n) = phi(2*n)/2 if n >= 2.
Showing 1-1 of 1 results.