cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216332 Number of horizontal and antidiagonal neighbor colorings of the even squares of an n X 2 array with new integer colors introduced in row major order.

This page as a plain text file.
%I A216332 #26 Feb 16 2025 08:33:18
%S A216332 1,2,3,10,27,114,409,2066,9089,52922,272947,1788850,10515147,76282138,
%T A216332 501178937,3974779402,28773452321,247083681522,1949230218691,
%U A216332 17984917069018,153281759047387,1510073008031682,13806215066685433
%N A216332 Number of horizontal and antidiagonal neighbor colorings of the even squares of an n X 2 array with new integer colors introduced in row major order.
%C A216332 Number of vertex covers and independent vertex sets of the n-1 X n-1 black bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the black squares of an n-1 X n-1 board. - _Andrew Howroyd_, May 08 2017
%H A216332 R. H. Hardin, <a href="/A216332/b216332.txt">Table of n, a(n) for n = 1..210</a>
%H A216332 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BlackBishopGraph.html">Black Bishop Graph</a>
%H A216332 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a>
%H A216332 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a>
%e A216332 Some solutions for n=5:
%e A216332 ..0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x
%e A216332 ..x..1....x..1....x..1....x..0....x..1....x..1....x..0....x..1....x..1....x..0
%e A216332 ..0..x....2..x....2..x....1..x....2..x....2..x....1..x....2..x....0..x....1..x
%e A216332 ..x..2....x..0....x..1....x..2....x..1....x..0....x..1....x..0....x..1....x..2
%e A216332 ..3..x....3..x....3..x....0..x....2..x....1..x....0..x....2..x....0..x....3..x
%e A216332 There are 5 black squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 5 ways to place 1 and 4 ways to place 2 so a(4)=1+5+4=10. - _Andrew Howroyd_, Jun 06 2017
%t A216332 Table[Sum[Binomial[Ceiling[n/2], k] BellB[n - k], {k, 0, Ceiling[n/2]}], {n, 0, 20}] (* _Eric W. Weisstein_, Jun 25 2017 *)
%Y A216332 Column 2 of A216338.
%Y A216332 Row sums of A274105(n-1) for n>2.
%Y A216332 Cf. A216078, A201862, A286422.
%K A216332 nonn
%O A216332 1,2
%A A216332 _R. H. Hardin_, Sep 04 2012