This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216358 #8 Jul 31 2014 09:24:12 %S A216358 1,2,129,2258,66266,1711282,48405689,1366932878,39516211006, %T A216358 1152710434262,33978897474149,1008971023405798,30155867955237721, %U A216358 906105094582017192,27351768342997448884,828919276503075367768,25208280600556937464286,768948732346237772809572 %N A216358 G.f.: 1/( (1-32*x)*(1+11*x-x^2)^2 )^(1/5). %F A216358 G.f.: exp( Sum_{n>=1} A070782(n)*x^n/n ) where A070782(n) = Sum_{k=0..n} binomial(5*n,5*k). %F A216358 a(n) ~ 2^(5*n+3) * ((25-11*sqrt(5))/2)^(1/10) * GAMMA(4/5) / (5 * 11^(2/5) * n^(4/5) * Pi). - _Vaclav Kotesovec_, Jul 31 2014 %e A216358 G.f.: A(x) = 1 + 2*x + 129*x^2 + 2258*x^3 + 66266*x^4 + 1711282*x^5 +... %e A216358 where 1/A(x)^5 = 1 - 10*x - 585*x^2 - 3830*x^3 + 705*x^4 - 32*x^5. %e A216358 The logarithm of the g.f. begins: %e A216358 log(A(x)) = 2*x + 254*x^2/2 + 6008*x^3/3 + 215766*x^4/4 + 6643782*x^5/5 + 215492564*x^6/6 +...+ A070782(n)*x^n/n +... %o A216358 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(5*m, 5*j))*x^m/m+x*O(x^n)))); polcoeff(A, n)} %o A216358 for(n=0, 31, print1(a(n), ", ")) %Y A216358 Cf. A216316, A216357, A070782. %K A216358 nonn %O A216358 0,2 %A A216358 _Paul D. Hanna_, Sep 04 2012