A216374 Number of ways to express the square of the n-th prime as the sum of four nonzero squares.
1, 0, 1, 2, 3, 5, 7, 9, 13, 20, 23, 32, 38, 42, 50, 63, 77, 83, 99, 111, 117, 137, 150, 172, 204, 221, 230, 247, 257, 275, 347, 368, 402, 414, 475, 488, 527, 567, 595, 638, 682, 698, 776, 792, 825, 842, 945, 1055, 1092, 1112, 1150, 1210, 1230, 1333, 1397, 1463, 1530, 1553, 1622, 1668, 1692, 1813, 1989, 2041
Offset: 1
Keywords
Examples
prime(n)'s are 2, 3, 5, 7, 11, 13, 17, ... giving the sequence 1, 0, 1, 2, 3, 5, 7, ...
Links
- Sergey Beliy and others, Pythagorean "five"tuples and "six"tuples, digest of 9 messages in Yahoo group "Unsolved Problems in Number Theory, Logic, and Cryptography", Sep 04 2012.
Programs
-
PARI
forprime(p=2,1000, k=0; for(s1=1,sqrt((p^2)/4),for(s2=s1,sqrt((p^2 - s1^2)/3), for(s3=s2,sqrt((p^2-s1^2 - s2^2)/2), if(issquare(p^2-s1^2-s2^2-s3^2),k++)))) ; f = floor((p^2+4*p+24)/48.) ; f2 = (p^2 + 4*p + (19*(5*(p%48)+2)^2)%48 - 24)/48 ; print1([p,k,f,f2]" ")) /* code above prints [p, k, f, f2] where p is the prime, k is the number of ways the square of p can be expressed as the sum of four nonzero squares, and f and f2 are the formulas derivations. f and k are observed to be the same for p from 3 to 997; f2 and k are observed to be the same for p from 5 to 997. */
-
PARI
A216374(n)=sum(s1=1,.5*n=prime(n+1),my(t);sum(s2=s1,sqrtint((n^2-s1^2)\3),sum(s3=s2,sqrtint((t=n^2-s1^2-s2^2)\2),issquare(t-s3^2)))) \\ M. F. Hasler, Sep 11 2012
Formula
a(n) = floor((prime(n)^2 + 4*prime(n) + 24)/48) (conjectured for n>1).
a(n) = (prime(n)^2 + 4*prime(n) + (19*(5*(prime(n) mod 48)+2)^2) mod 48 - 24)/48 (conjectured for n>2).
a(n) = A025428(A001248(n)), where A001248(n) = A000040(n)^2 = prime(n)^2. - M. F. Hasler, Sep 10 2012
Comments