cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216374 Number of ways to express the square of the n-th prime as the sum of four nonzero squares.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 9, 13, 20, 23, 32, 38, 42, 50, 63, 77, 83, 99, 111, 117, 137, 150, 172, 204, 221, 230, 247, 257, 275, 347, 368, 402, 414, 475, 488, 527, 567, 595, 638, 682, 698, 776, 792, 825, 842, 945, 1055, 1092, 1112, 1150, 1210, 1230, 1333, 1397, 1463, 1530, 1553, 1622, 1668, 1692, 1813, 1989, 2041
Offset: 1

Views

Author

Mark Underwood, Sep 05 2012

Keywords

Comments

The simple counting and the conjectured first formula agree for all the primes from 3 to 997. The counting and the conjectured second formula agree for all the primes from 5 to 997. The author of this sequence would like to know whether the formulas are already known and/or how it could be proved.
I suspect Jacobi's theorem will suffice. - Charles R Greathouse IV, Sep 30 2012

Examples

			prime(n)'s are 2, 3, 5, 7, 11, 13, 17, ... giving the sequence 1, 0, 1, 2, 3, 5, 7, ...
		

Crossrefs

Programs

  • PARI
    forprime(p=2,1000, k=0; for(s1=1,sqrt((p^2)/4),for(s2=s1,sqrt((p^2 - s1^2)/3), for(s3=s2,sqrt((p^2-s1^2 - s2^2)/2), if(issquare(p^2-s1^2-s2^2-s3^2),k++)))) ; f = floor((p^2+4*p+24)/48.) ; f2 = (p^2 + 4*p + (19*(5*(p%48)+2)^2)%48 - 24)/48 ;                 print1([p,k,f,f2]" "))
    /* code above prints [p, k, f, f2] where p is the prime, k is the number of ways the square of p can be expressed as the sum of four nonzero squares, and f and f2 are the formulas derivations. f and k are observed to be the same for p from 3 to 997; f2 and k are observed to be the same for p from 5 to 997. */
    
  • PARI
    A216374(n)=sum(s1=1,.5*n=prime(n+1),my(t);sum(s2=s1,sqrtint((n^2-s1^2)\3),sum(s3=s2,sqrtint((t=n^2-s1^2-s2^2)\2),issquare(t-s3^2)))) \\ M. F. Hasler, Sep 11 2012

Formula

a(n) = floor((prime(n)^2 + 4*prime(n) + 24)/48) (conjectured for n>1).
a(n) = (prime(n)^2 + 4*prime(n) + (19*(5*(prime(n) mod 48)+2)^2) mod 48 - 24)/48 (conjectured for n>2).
a(n) = A025428(A001248(n)), where A001248(n) = A000040(n)^2 = prime(n)^2. - M. F. Hasler, Sep 10 2012