A216394 Number of values of k for which phi(k) is a permutation of decimal digits of k, for 2^(n-1) < k < 2^n.
1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 3, 11, 2, 13, 21, 26, 49, 91, 186, 108, 335, 937, 500, 1681, 4208, 4156
Offset: 1
Examples
a(14) = 2 because the values of k satisfying the condition for 2^13 < k < 2^14 are {8541, 8982}. - _V. Raman_, Feb 18 2014
Programs
-
PARI
a(n)=sum(k=2^(n-1), 2^n, vecsort(digits(k)) == vecsort(digits(eulerphi(k)))) \\ V. Raman, Feb 18 2014, based on edits by M. F. Hasler
-
Python
from sympy import totient def A216394(n): if n == 1: return 1 c = 0 for i in range(2**(n-1)+1, 2**n): s1, s2 = sorted(str(i)), sorted(str(totient(i))) if len(s1) == len(s2) and s1 == s2: c += 1 return c # Chai Wah Wu, Jul 23 2015
Formula
a(n) = # { k in A115921 | 2^(n-1) < k < 2^n }. - M. F. Hasler, Feb 24 2014