A216395 Number of values of k for which sigma(k) is a permutation of decimal digits of k, for 2^(n-1) < k < 2^n.
1, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 6, 3, 5, 14, 22, 26, 60, 64, 71, 179, 333, 274, 751, 1653, 1726, 3032
Offset: 1
Examples
a(12) = 6 because the values of k satisfying the condition for 2^11 < k < 2^12 are {2391, 2556, 2931, 3409, 3678, 3679}. - _V. Raman_, Feb 19 2014
Programs
-
PARI
a(n)=sum(k=2^(n-1), 2^n, vecsort(digits(k)) == vecsort(digits(sigma(k)))) \\ V. Raman, Feb 19 2014, based on edits by M. F. Hasler
-
Python
from sympy import divisor_sigma def A216395(n): if n == 1: return 1 c = 0 for i in range(2**(n-1)+1, 2**n): s1, s2 = sorted(str(i)), sorted(str(divisor_sigma(i))) if len(s1) == len(s2) and s1 == s2: c += 1 return c # Chai Wah Wu, Jul 23 2015
Formula
a(n) = # { k in A115920 | 2^(n-1) < k < 2^n }. - M. F. Hasler, Feb 24 2014