cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216404 a(n) = lcm((d1 + 1), (d2 + 1), ..., (dk + 1)), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2, A001567(n).

Original entry on oeis.org

96, 36, 132, 126, 740, 280, 384, 360, 90, 1406, 224, 570, 2090, 774, 96, 608, 1408, 168, 4070, 4266, 516, 680, 2656, 1110, 360, 252, 1064, 2340, 672, 7436, 1368, 1184, 1806, 660, 9506, 3384, 252, 11858, 4448, 8246, 4648, 720, 5310, 16058, 8008, 5676, 3630, 17910
Offset: 1

Views

Author

Marius Coman, Sep 06 2012

Keywords

Comments

It is notable how many primes are obtained if we add or subtract 1 from these numbers.
Primes obtained by adding 1 and the corresponding Fermat pseudoprime in the brackets: 97(341), 37(561), 127(1105), 281(1729), 571(3277), 97(4371), 1409(5461), 2657(10261), 2341(13747), 673(13981), 661(18705), 46499(30121), 8009(31621), 3631(34945), 17911(35333).
Primes obtained by subtracting 1 and the corresponding Fermat pseudoprime in the brackets: 131(645), 739(1387), 383(1905), 359(2047), 89(2465), 223(2821), 569(3277), 2089(4033), 773(4369), 607(4681), 167(6601), 1109(10585), 359(11305), 251(12801), 1063(13741), 2339(13747), 1367(15709), 659(18705), 251(23001), 4447(25761), 719(30889), 5309(31417), 160479(31609), 17909(35333).
Numbers from sequence which do not lead to a prime number adding or subtracting 1 (and the corresponding Fermat pseudoprimes to base 2 in the bracketts): 1406(2701), 4070(7957), 4266(8321), 516(8481), 680(8911), 7436(14491), 1184(15841), 1806(16705), 9506(18721), 3384(19951), 11858(23377), 8246(29341), 5676(33153). Interesting analogies can be found between these "exceptions": subtracting 1 from the ones of the form 10*k + 6 often yields semiprimes, etc.
There are probably many other interesting utilities for the function from the sequence above as for the function a(n) = lcm(d1-1, d2-1, ..., dk-1), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2 A001567(n).

Crossrefs

Cf. A001567.