cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216468 Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...6, are six primes.

This page as a plain text file.
%I A216468 #10 Sep 10 2014 12:25:10
%S A216468 907,1307,1439,1459,1669,1879,2089,2141,2351,2713,4139,4759,4969,5179,
%T A216468 5417,6047,6101,6353,6779,6793,7919,8369,8663,9049,9349,9491,9533,
%U A216468 9623,9769,10099,10691,10883,11083,11213,11369,11399,11621,11789,11887,11923,12097,12119
%N A216468 Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...6, are six primes.
%C A216468 Conjecture: only 312722 primes are not in the sequence: 2, 3, ..., 198702899.
%e A216468 907 is in the sequence because with d = 150: 7, 157, 307, 457, 607, 757 are all primes.
%t A216468 fQ[p_] := Module[{d = 1}, While[6*d < p && Union[PrimeQ[p - Range[6]*d]] != {True}, d++]; 6*d < p]; Select[Prime[Range[4, PrimePi[12119]]], fQ] (* _T. D. Noe_, Sep 07 2012 *)
%o A216468 (PARI) is(n)=my(t); forprime(p=2,n-20,if((n-p)%6==0 && isprime((t=(n-p)/6)+p) && isprime(2*t+p) && isprime(3*t+p) && isprime(4*t+p) && isprime(5*t+p) && isprime(n), return(1))); 0 \\ _Charles R Greathouse IV_, Sep 10 2014
%Y A216468 Cf. A215895, A216495, A094383, A216497, A216498.
%K A216468 nonn
%O A216468 1,1
%A A216468 _Alex Ratushnyak_, Sep 07 2012