This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216480 #20 May 10 2018 03:31:32 %S A216480 60,168,504,1092,2448,5616,6072,9828,25308,28224,32736,39732,51888, %T A216480 74412,150348,194472,285852,456288,546312,612468,721392,1024128, %U A216480 1285608,1934868,2097024,2165292,2328648,2588772,3594432,3822588,5544672,5848428,6324552,7174332,8487168,9095592 %N A216480 Primitive non-solvable numbers: orders of non-solvable groups such that all groups with order a proper divisor of that order are solvable. %C A216480 Primitive elements of A056866; consequently, each term is divisible by 4 and either 3 or 5. %C A216480 That is, numbers n such that n is in A056866, but no smaller m dividing n is in A056866. - _Charles R Greathouse IV_, May 09 2018 %H A216480 Charles R Greathouse IV, <a href="/A216480/b216480.txt">Table of n, a(n) for n = 1..10000</a> %F A216480 a(n) ~ kn^3 log^3 n, where k = 27/8. - _Charles R Greathouse IV_, Sep 11 2012 %o A216480 (PARI) list(lim)={ %o A216480 my(v=List([5616]),t); %o A216480 forprime(p=2,log(lim)\log(8)+2, %o A216480 listput(v,(4^p-1)<<p) %o A216480 ); %o A216480 forprime(p=3,log(2*lim)\log(27)+2, %o A216480 listput(v,3^p*(9^p\2)) %o A216480 ); %o A216480 forprime(p=3,log(lim)\log(32)+2, %o A216480 listput(v,(4^p-1)*(2^p-1)<<(2*p)) %o A216480 ); %o A216480 forprime(p=7,sqrtn(2*lim,3)+1, %o A216480 if(p%5>1 && p%5<4, listput(v,p^2\2*p)) %o A216480 ); %o A216480 vecsort(select(n->n<=lim,Vec(v))) %o A216480 }; %Y A216480 Cf. A056866. %K A216480 nonn,nice %O A216480 1,1 %A A216480 _Charles R Greathouse IV_, Sep 11 2012