This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216484 #30 Sep 08 2022 08:46:03 %S A216484 3,5,7,11,13,17,19,29,37,41,43,53,59,61,67,73,79,83,97,101,103,107, %T A216484 109,131,137,139,149,151,157,163,173,179,181,193,197,199,211,227,229, %U A216484 241,251,269,271,277,283,293,307,313,317,331,337,347,349,367,373,379,389 %N A216484 Primes p such that x^36 = 2 has no solution mod p. %C A216484 Complement of A049568 relative to A000040. %C A216484 Different from A059264: 919, 1423, 1999, ... (see A059668) are terms of this sequence, but not of A059264. [_Joerg Arndt_, Sep 14 2012] %C A216484 Coincides for the first 416 terms with the sequence of primes p such that x^108 = 2 has no solution mod p (first divergence is at 3947). [_Bruno Berselli_, Sep 14 2012] %H A216484 Vincenzo Librandi, <a href="/A216484/b216484.txt">Table of n, a(n) for n = 1..5000</a> %t A216484 ok[p_] := Reduce[Mod[x^36 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[500]], ok] %t A216484 Select[Prime[Range[PrimePi[400]]], ! MemberQ[PowerMod[Range[#], 36, #], Mod[2, #]] &] (* _Bruno Berselli_, Sep 14 2012 *) %o A216484 (Magma) [p: p in PrimesUpTo(400) | forall{x: x in ResidueClassRing(p) | x^36 ne 2}]; %Y A216484 Cf. A000040, A049568. %Y A216484 Cf. A059668 (primes p such that x^36 = 2 has no solution mod p, but x^12 = 2 has a solution mod p). %K A216484 nonn,easy %O A216484 1,1 %A A216484 _Vincenzo Librandi_, Sep 14 2012