cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216486 a(n) is equal to the rational part (considering of the field Q(sqrt(13))) of the numbers A(n)/sqrt(13), where we have A(n) = ((sqrt(13) - 1)/2)*A(n-1) + A(n-2) + ((3-sqrt(13))/2)*A(n-3), with A(0) = 6, A(1) = sqrt(13) - 1, and A(2) = 11 - sqrt(13).

This page as a plain text file.
%I A216486 #39 Feb 15 2024 08:45:40
%S A216486 0,1,-1,4,-3,14,-10,48,-37,166,-144,582,-570,2067,-2260,7421,-8923,
%T A216486 26878,-35020,98039,-136612,359649,-529990,1325491,-2046310,4903786,
%U A216486 -7868991,18199354,-30157768,67720279,-115255425,252540383,-439456837,943488036
%N A216486 a(n) is equal to the rational part (considering of the field Q(sqrt(13))) of the numbers A(n)/sqrt(13), where we have  A(n) = ((sqrt(13) - 1)/2)*A(n-1) + A(n-2) + ((3-sqrt(13))/2)*A(n-3), with A(0) = 6, A(1) = sqrt(13) - 1, and A(2) = 11 - sqrt(13).
%C A216486 The Berndt-type sequence number 2 for the argument 2*Pi/13 defined by the following relation: A216605(n) + a(n)*sqrt(13) = A(n) = 2*(c(1)^n + c(3)^n + c(4)^n), where c(j) := 2*cos(2*Pi*j/13), j=1..6. The numbers a(n), n=0,1,..., are all positive integers. We note that we also have A216605(n) - a(n)*sqrt(13) = B(n) = 2*(c(2)^n + c(5)^n + c(6)^n) and the following recurrence relation holds: B(n) = -((sqrt(13)+1)/2)*B(n-1) + B(n-2) + ((3+sqrt(13))/2)*B(n-3), with B(0) = 6, B(1) = -sqrt(13) - 1, and B(2) = 11 + sqrt(13).
%C A216486 We note that the sums a(2*n+1) + a(2*n+2) are nonnegative only for n = 0..5.
%D A216486 R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
%D A216486 R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
%H A216486 Andrew Howroyd, <a href="/A216486/b216486.txt">Table of n, a(n) for n = 0..500</a>
%H A216486 R. Witula and D. Slota, <a href="https://www.mathstat.dal.ca/fibonacci/abstracts.pdf">Quasi-Fibonacci numbers of order 13</a>, (abstract) see p. 15.
%H A216486 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-1,5,4,-6,-3,1).
%F A216486 G.f.: x*(1 - 2*x^2 + 2*x^3 + x^4)/(1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6).
%F A216486 a(n) = - a(n-1) + 5*a(n-2) + 4*a(n-3) - 6*a(n-4) - 3*a(n-5) + a(n-6), which from the respective polynomial-type formula follows given by Witula in section "Formula" in A216605.
%e A216486 We have a(5) + a(6) + a(4) + a(2) = a(7) + a(8) + a(6) + a(2) = a(9) + a(5) + a(1) + a(10) + a(8) = 0 and
%e A216486   a(6) + a(9) + a(10) = a(11) + a(12) = 12.
%e A216486 Moreover, the following relations hold: A(3) = 4*A(1), B(3) = 4*B(1), A(5) = 4*A(3) + 2*sqrt(13), B(5) = 4*B(3)-2*sqrt(13), A(7) = 4*A(5) + 8*sqrt(13), B(7) = 4*B(5)-8*sqrt(13), A(4) = 3*A(2) - 2, B(4) = 3*B(2) + 2, 6 + A(6) = 3*A(4) + A(2), and A(8) - 3*A(6) = 25 - A(5)/2.
%t A216486 LinearRecurrence[{-1, 5, 4, -6, -3, 1}, {0, 1, -1, 4, -3, 14}, 30]
%o A216486 (PARI) concat([0],Vec((1-2*x^2+2*x^3+x^4)/(1+x-5*x^2-4*x^3+6*x^4+3*x^5-x^6) + O(x^30))) \\ _Andrew Howroyd_, Feb 25 2018
%Y A216486 Cf. A216605.
%K A216486 sign,easy
%O A216486 0,4
%A A216486 _Roman Witula_, Sep 11 2012