cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216497 Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...4, are four primes.

This page as a plain text file.
%I A216497 #7 Sep 10 2014 12:23:10
%S A216497 29,53,127,131,157,173,197,227,251,257,271,283,293,311,353,373,389,
%T A216497 397,421,443,449,463,479,509,521,587,607,613,617,661,673,677,691,719,
%U A216497 757,761,811,821,823,839,853,859,863,881,887,907,911,941,953,967,983,997,1013
%N A216497 Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...4, are four primes.
%C A216497 Conjecture: only 653 primes are not in the sequence: 2, 3, ..., 100291.
%e A216497 29 is in the sequence because with d=6: 23, 17, 11, 5 are all primes.
%t A216497 prms = 4; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[1013]]], fQ] (* _T. D. Noe_, Sep 08 2012 *)
%o A216497 (PARI) is(n)=my(t); forprime(p=2,n-12,if((n-p)%4==0 && isprime((t=(n-p)/4)+p) && isprime(2*t+p) && isprime(3*t+p) && isprime(n), return(1))); 0 \\ _Charles R Greathouse IV_, Sep 10 2014
%Y A216497 Cf. A216495, A094383, A216498, A216468.
%K A216497 nonn
%O A216497 1,1
%A A216497 _Alex Ratushnyak_, Sep 08 2012