This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216592 #33 Jul 13 2018 04:04:32 %S A216592 0,108,27018 %N A216592 Numbers m such that 8^m + m^8 + 1 is prime. %C A216592 Next term > 2*10^4. %C A216592 a(4) > 10^5. - _Robert Price_, Oct 08 2015 %e A216592 8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence. %t A216592 Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &] %o A216592 (PARI) is(n)=ispseudoprime(8^n+n^8+1) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A216592 Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13). %Y A216592 Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19). %Y A216592 Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5). %Y A216592 Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5). %K A216592 nonn,hard,more,bref %O A216592 1,2 %A A216592 _Vincenzo Librandi_, Sep 09 2012 %E A216592 a(3) from _Robert Price_, Oct 08 2015