cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216595 Number of distinct connected planar figures that can be formed from 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1.

This page as a plain text file.
%I A216595 #34 Jul 19 2015 09:02:52
%S A216595 1,2,14,126,1267,13550,150665
%N A216595 Number of distinct connected planar figures that can be formed from 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1.
%C A216595 Figures that differ by a rotation or reflection are regarded as distinct (cf. A216583).
%C A216595 This sequence is A216581 without the condition that the adjacency graph of the dominoes forms a tree.
%C A216595 An example: The two solutions
%C A216595 V H -
%C A216595 |   V
%C A216595 H - |
%C A216595 and
%C A216595 H - V
%C A216595 V   |
%C A216595 | H -
%C A216595 are considered to be the same because the resulting shape is the same.
%H A216595 César E. Lozada, <a href="/A216583/a216583.pdf">Illustration of terms n <= 4 of A216583</a>
%H A216595 Manfred Scheucher, <a href="/A216595/a216595.py.txt">Python Script</a>
%H A216595 N. J. A. Sloane, <a href="/A056786/a056786.jpg">Illustration of initial terms of A056786, A216598, A216583, A216595, A216492, A216581</a> (Exclude figures marked (A))
%H A216595 N. J. A. Sloane, <a href="/A056786/a056786.pdf">Illustration of third term of A056786, A216598, A216583, A216595, A216492, A216581</a> (a better drawing for the third term)
%H A216595 M. Vicher, <a href="http://www.vicher.cz/puzzle/polyforms.htm">Polyforms</a>
%H A216595 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>
%Y A216595 Cf. A056786, A216598, A216583, A216595, A216492, A216581.
%K A216595 nonn,more
%O A216595 0,2
%A A216595 _N. J. A. Sloane_, Sep 08 2012
%E A216595 Terms a(4)-a(6) added by _César Eliud Lozada_, Sep 09 2012