This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216595 #34 Jul 19 2015 09:02:52 %S A216595 1,2,14,126,1267,13550,150665 %N A216595 Number of distinct connected planar figures that can be formed from 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1. %C A216595 Figures that differ by a rotation or reflection are regarded as distinct (cf. A216583). %C A216595 This sequence is A216581 without the condition that the adjacency graph of the dominoes forms a tree. %C A216595 An example: The two solutions %C A216595 V H - %C A216595 | V %C A216595 H - | %C A216595 and %C A216595 H - V %C A216595 V | %C A216595 | H - %C A216595 are considered to be the same because the resulting shape is the same. %H A216595 César E. Lozada, <a href="/A216583/a216583.pdf">Illustration of terms n <= 4 of A216583</a> %H A216595 Manfred Scheucher, <a href="/A216595/a216595.py.txt">Python Script</a> %H A216595 N. J. A. Sloane, <a href="/A056786/a056786.jpg">Illustration of initial terms of A056786, A216598, A216583, A216595, A216492, A216581</a> (Exclude figures marked (A)) %H A216595 N. J. A. Sloane, <a href="/A056786/a056786.pdf">Illustration of third term of A056786, A216598, A216583, A216595, A216492, A216581</a> (a better drawing for the third term) %H A216595 M. Vicher, <a href="http://www.vicher.cz/puzzle/polyforms.htm">Polyforms</a> %H A216595 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %Y A216595 Cf. A056786, A216598, A216583, A216595, A216492, A216581. %K A216595 nonn,more %O A216595 0,2 %A A216595 _N. J. A. Sloane_, Sep 08 2012 %E A216595 Terms a(4)-a(6) added by _César Eliud Lozada_, Sep 09 2012