This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216607 #37 Nov 01 2023 20:50:51 %S A216607 0,0,1,0,1,0,2,1,0,2,1,0,3,2,1,0,3,2,1,0,4,3,2,1,0,4,3,2,1,0,5,4,3,2, %T A216607 1,0,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3,2,1,0,7,6,5,4,3,2,1,0,7,6,5,4, %U A216607 3,2,1,0,8,7,6,5,4,3,2,1,0,8,7,6,5,4,3 %N A216607 The sequence used to represent partition binary diagram as an array. %C A216607 This sequence differs from A025672 first at index n=110. %H A216607 Mircea Merca, <a href="http://dx.doi.org/10.1093/comjnl/bxs111">Binary Diagrams for Storing Ascending Compositions</a>, Comp. J., 2012. %F A216607 a(n) = floor((1/4)*ceiling(sqrt(4*n))^2) - n. %F A216607 a(n^2) = a(n^2+n) = 0. %F A216607 From _Szymon Lukaszyk_, Oct 27 2023: (Start) %F A216607 a(n) = (-n) mod round(sqrt(n)). %F A216607 a(n) = (A167268(n) - 2)/4. (End) %p A216607 seq(floor((1/4)*ceil(sqrt(4*n))^2)-n,n=1..50) %o A216607 (PARI) A216607(n)=floor((1/4)*ceil(sqrt(4*n))^2)-n; %Y A216607 Cf. A025672, A167268. %K A216607 nonn,easy %O A216607 1,7 %A A216607 _Mircea Merca_, Sep 10 2012