cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216607 The sequence used to represent partition binary diagram as an array.

This page as a plain text file.
%I A216607 #37 Nov 01 2023 20:50:51
%S A216607 0,0,1,0,1,0,2,1,0,2,1,0,3,2,1,0,3,2,1,0,4,3,2,1,0,4,3,2,1,0,5,4,3,2,
%T A216607 1,0,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3,2,1,0,7,6,5,4,3,2,1,0,7,6,5,4,
%U A216607 3,2,1,0,8,7,6,5,4,3,2,1,0,8,7,6,5,4,3
%N A216607 The sequence used to represent partition binary diagram as an array.
%C A216607 This sequence differs from A025672 first at index n=110.
%H A216607 Mircea Merca, <a href="http://dx.doi.org/10.1093/comjnl/bxs111">Binary Diagrams for Storing Ascending Compositions</a>, Comp. J., 2012.
%F A216607 a(n) = floor((1/4)*ceiling(sqrt(4*n))^2) - n.
%F A216607 a(n^2) = a(n^2+n) = 0.
%F A216607 From _Szymon Lukaszyk_, Oct 27 2023: (Start)
%F A216607 a(n) = (-n) mod round(sqrt(n)).
%F A216607 a(n) = (A167268(n) - 2)/4. (End)
%p A216607 seq(floor((1/4)*ceil(sqrt(4*n))^2)-n,n=1..50)
%o A216607 (PARI) A216607(n)=floor((1/4)*ceil(sqrt(4*n))^2)-n;
%Y A216607 Cf. A025672, A167268.
%K A216607 nonn,easy
%O A216607 1,7
%A A216607 _Mircea Merca_, Sep 10 2012