This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216624 #23 Mar 07 2020 14:58:35 %S A216624 1,2,2,2,5,2,3,4,4,3,2,8,6,8,2,4,4,6,6,4,4,2,10,4,15,4,10,2,4,4,12,6, %T A216624 6,12,4,4,3,11,4,16,8,16,4,11,3,4,6,8,6,8,8,6,8,6,4,2,10,10,22,4,30,4, %U A216624 22,10,10,2,6,4,8,9,8,8,8,8,9,8,4,6 %N A216624 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} gcd(c,d) for n>=1, k>=1. %C A216624 T(n,k) = number of subgroups of C_n X C_k. [Hampjes et al.] - _N. J. A. Sloane_, Feb 02 2013 %H A216624 Alois P. Heinz, <a href="/A216624/b216624.txt">Antidiagonals n = 1..141, flattened</a> %H A216624 M. Hampejs, N. Holighaus, L. Toth and C. Wiesmeyr, <a href="http://www.univie.ac.at/nuhag-php/bibtex/open_files/13485_121031-Toth-finalsubmission.pdf">On the subgroups of the group Z_m X Z_n</a>, 2012. - From _N. J. A. Sloane_, Feb 02 2013 %F A216624 T(n,n) = A060724(n) = sum_{d|n} d*tau((n/d)^2). %F A216624 T(n,1) = T(1,n) = A000005(n) = tau(n). %F A216624 T(n,2) = T(2,n) = A060710(n) = sum_{d|n} (3-[d is odd]) (Iverson bracket). %F A216624 T(n+1,n) = A092517(n) = tau(n+1)*tau(n). %F A216624 T(prime(n),1) = A007395(n) = 2. %F A216624 T(prime(n),prime(n)) = A113935(n) = prime(n)+3. %e A216624 [----1---2---3---4---5---6---7---8---9--10--11--12] %e A216624 [ 1] 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6 %e A216624 [ 2] 2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16 %e A216624 [ 3] 2, 4, 6, 6, 4, 12, 4, 8, 10, 8, 4, 18 %e A216624 [ 4] 3, 8, 6, 15, 6, 16, 6, 22, 9, 16, 6, 30 %e A216624 [ 5] 2, 4, 4, 6, 8, 8, 4, 8, 6, 16, 4, 12 %e A216624 [ 6] 4, 10, 12, 16, 8, 30, 8, 22, 20, 20, 8, 48 %e A216624 [ 7] 2, 4, 4, 6, 4, 8, 10, 8, 6, 8, 4, 12 %e A216624 [ 8] 4, 11, 8, 22, 8, 22, 8, 37, 12, 22, 8, 44 %e A216624 [ 9] 3, 6, 10, 9, 6, 20, 6, 12, 23, 12, 6, 30 %e A216624 [10] 4, 10, 8, 16, 16, 20, 8, 22, 12, 40, 8, 32 %e A216624 [11] 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 14, 12 %e A216624 [12] 6, 16, 18, 30, 12, 48, 12, 44, 30, 32, 12, 90 %e A216624 . %e A216624 Displayed as a triangular array: %e A216624 1, %e A216624 2, 2, %e A216624 2, 5, 2, %e A216624 3, 4, 4, 3, %e A216624 2, 8, 6, 8, 2, %e A216624 4, 4, 6, 6, 4, 4, %e A216624 2, 10, 4, 15, 4, 10, 2, %e A216624 4, 4, 12, 6, 6, 12, 4, 4, %e A216624 3, 11, 4, 16, 8, 16, 4, 11, 3, %p A216624 with(numtheory): %p A216624 T:= (n, k)-> add(add(igcd(c,d), c=divisors(n)), d=divisors(k)): %p A216624 seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # _Alois P. Heinz_, Sep 12 2012 %p A216624 T:=proc(m,n) local d; add( d*tau(m*n/d^2), d in divisors(gcd(m,n))); end; # _N. J. A. Sloane_, Feb 02 2013 %t A216624 t[n_, k_] := Sum[Sum[GCD[c, d], {c, Divisors[n]}], {d, Divisors[k]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 21 2013 *) %o A216624 (Sage) %o A216624 def A216624(n, k) : %o A216624 cp = cartesian_product([divisors(n), divisors(k)]) %o A216624 return reduce(lambda x,y: x+y, map(gcd, cp)) %o A216624 for n in (1..12): [A216624(n,k) for k in (1..12)] %Y A216624 Cf. A216620, A216621, A216622, A216623, A216625, A216626, A216627. %Y A216624 Main diagonal is A060724. %Y A216624 Rows give A000005, A060710, A054584, A221951, A221852. %K A216624 nonn,tabl %O A216624 1,2 %A A216624 _Peter Luschny_, Sep 12 2012