This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216625 #14 Oct 18 2019 00:01:56 %S A216625 1,2,5,2,4,6,3,8,6,15,2,4,4,6,8,4,10,12,16,8,30,2,4,4,6,4,8,10,4,11,8, %T A216625 22,8,22,8,37,3,6,10,9,6,20,6,12,23,4,10,8,16,16,20,8,22,12,40,2,4,4, %U A216625 6,4,8,4,8,6,8,14,6,16,18,30,12,48,12,44,30,32 %N A216625 Triangle read by rows, n >= 1, 1 <= k <= n, T(n,k) = Sum_{c|n,d|k} gcd(c,d). %C A216625 This is the lower triangular array of A216624, which is the main entry for this sequence. %C A216625 T(n,1) = A000005(n) = tau(n). %C A216625 T(n,n) = A060724(n) = Sum_{d|n} d*tau((n/d)^2). %H A216625 Alois P. Heinz, <a href="/A216625/b216625.txt">Rows n = 1..141, flattened</a> %e A216625 The first rows of the triangle are: %e A216625 1; %e A216625 2, 5; %e A216625 2, 4, 6; %e A216625 3, 8, 6, 15; %e A216625 2, 4, 4, 6, 8; %e A216625 4, 10, 12, 16, 8, 30; %e A216625 2, 4, 4, 6, 4, 8, 10; %e A216625 4, 11, 8, 22, 8, 22, 8, 37; %e A216625 3, 6, 10, 9, 6, 20, 6, 12, 23; %p A216625 with(numtheory): %p A216625 T:= (n, k)-> add(add(igcd(c, d), c=divisors(n)), d=divisors(k)): %p A216625 seq (seq (T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Sep 12 2012 %t A216625 T[n_, k_] := Sum[GCD[c, d], {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 25 2014 *) %o A216625 (Sage) %o A216625 for n in (1..9): [A216624(n,k) for k in (1..n)] %Y A216625 Cf. A216620, A216621, A216622, A216623, A216624, A216626, A216627. %K A216625 nonn,tabl %O A216625 1,2 %A A216625 _Peter Luschny_, Sep 12 2012