This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216626 #14 Mar 08 2020 00:07:12 %S A216626 1,3,3,4,7,4,7,12,12,7,6,15,10,15,6,12,18,28,28,18,12,8,28,24,27,24, %T A216626 28,8,15,24,30,42,42,30,24,15,13,31,32,60,16,60,32,31,13,18,39,60,56, %U A216626 72,72,56,60,39,18,12,42,28,51,48,70,48,51,28,42,12,28,36 %N A216626 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} lcm(c,d) for n>=1, k>=1. %C A216626 T(n,n) = A064950(n) = sum_{d|n} d*tau(d^2). %C A216626 T(n,1) = T(1,n) = A000203(n) = sigma(n). %C A216626 T(n,2) = T(2,n) = A062731(n) = sigma(2*n). %C A216626 T(n+1,n) = A083539(n) = sigma(n+1)*sigma(n). %C A216626 T(prime(n),1) = A008864(n) = prime(n)+1. %H A216626 Alois P. Heinz, <a href="/A216626/b216626.txt">Antidiagonals n = 1..141, flattened</a> %e A216626 [-----1---2---3----4----5----6----7----8----9---10---11---12] %e A216626 [ 1] 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28 %e A216626 [ 2] 3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60 %e A216626 [ 3] 4, 12, 10, 28, 24, 30, 32, 60, 28, 72, 48, 70 %e A216626 [ 4] 7, 15, 28, 27, 42, 60, 56, 51, 91, 90, 84, 108 %e A216626 [ 5] 6, 18, 24, 42, 16, 72, 48, 90, 78, 48, 72, 168 %e A216626 [ 6] 12, 28, 30, 60, 72, 70, 96, 124, 84, 168, 144, 150 %e A216626 [ 7] 8, 24, 32, 56, 48, 96, 22, 120, 104, 144, 96, 224 %e A216626 [ 8] 15, 31, 60, 51, 90, 124, 120, 83, 195, 186, 180, 204 %e A216626 [ 9] 13, 39, 28, 91, 78, 84, 104, 195, 55, 234, 156, 196 %e A216626 [10] 18, 42, 72, 90, 48, 168, 144, 186, 234, 112, 216, 360 %e A216626 [11] 12, 36, 48, 84, 72, 144, 96, 180, 156, 216, 34, 336 %e A216626 [12] 28, 60, 70, 108, 168, 150, 224, 204, 196, 360, 336, 270 %e A216626 . %e A216626 Displayed as a triangular array: %e A216626 1; %e A216626 3, 3; %e A216626 4, 7, 4; %e A216626 7, 12, 12, 7; %e A216626 6, 15, 10, 15, 6; %e A216626 12, 18, 28, 28, 18, 12; %e A216626 8, 28, 24, 27, 24, 28, 8; %e A216626 15, 24, 30, 42, 42, 30, 24, 15; %e A216626 13, 31, 32, 60, 16, 60, 32, 31, 13; %p A216626 with(numtheory): %p A216626 T:= (n, k) -> add(add(ilcm(c, d), c=divisors(n)), d=divisors(k)): %p A216626 seq (seq (T(n, 1+d-n), n=1..d), d=1..12); # _Alois P. Heinz_, Sep 12 2012 %t A216626 T[n_, k_] := Sum[LCM[c, d], {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 25 2014 *) %o A216626 (Sage) %o A216626 def A216626(n, k) : %o A216626 cp = cartesian_product([divisors(n), divisors(k)]) %o A216626 return reduce(lambda x,y: x+y, map(lcm, cp)) %o A216626 for n in (1..12): [A216626(n,k) for k in (1..12)] %Y A216626 Cf. A216620, A216621, A216622, A216623, A216624, A216625, A216627. %K A216626 nonn,tabl %O A216626 1,2 %A A216626 _Peter Luschny_, Sep 12 2012