This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216627 #14 Oct 09 2016 08:49:04 %S A216627 1,3,7,4,12,10,7,15,28,27,6,18,24,42,16,12,28,30,60,72,70,8,24,32,56, %T A216627 48,96,22,15,31,60,51,90,124,120,83,13,39,28,91,78,84,104,195,55,18, %U A216627 42,72,90,48,168,144,186,234,112,12,36,48,84,72,144,96,180,156 %N A216627 Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = sum_{c|n,d|k} lcm(c,d). %C A216627 This is the lower triangular array of A216626, which is the main entry for this sequence. %H A216627 Alois P. Heinz, <a href="/A216627/b216627.txt">Rows n = 1..141, flattened</a> %F A216627 T(n,1) = A000203(n) = sigma(n). %F A216627 T(n,n) = A064950(n) = sum_{d|n} d*tau(d^2). %e A216627 The first rows of the triangle are: %e A216627 1; %e A216627 3, 7; %e A216627 4, 12, 10; %e A216627 7, 15, 28, 27; %e A216627 6, 18, 24, 42, 16; %e A216627 12, 28, 30, 60, 72, 70; %e A216627 8, 24, 32, 56, 48, 96, 22; %e A216627 15, 31, 60, 51, 90, 124, 120, 83; %e A216627 13, 39, 28, 91, 78, 84, 104, 195, 55; %p A216627 with(numtheory): %p A216627 T:= (n, k) -> add(add(ilcm(c, d), c=divisors(n)), d=divisors(k)); %p A216627 seq (seq (T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Sep 12 2012 %t A216627 T[n_, k_] := Sum[LCM[c, d], {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 25 2014 *) %o A216627 (Sage) %o A216627 for n in (1..9): [A216626(n,k) for k in (1..n)] %Y A216627 Cf. A216620, A216621, A216622, A216623, A216624, A216625, A216626. %K A216627 nonn,tabl %O A216627 1,2 %A A216627 _Peter Luschny_, Sep 12 2012