cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216638 First appearance of the Fibonacci numbers in the decimals of Pi.

This page as a plain text file.
%I A216638 #20 Aug 31 2024 08:30:42
%S A216638 1,1,6,9,4,11,110,93,86,130,11,1638,229,3056,268,1510,10118,11477,727,
%T A216638 17711,83295,59861,22334,19659,301848,977089,59943,414086,536681,
%U A216638 649382,2729036,68232754,17793212,33986473,695781,135830965,117951651,36978613,170243036,366567058
%N A216638 First appearance of the Fibonacci numbers in the decimals of Pi.
%H A216638 Peter Trüb, <a href="https://pi2e.ch/blog/2017/03/10/pi-digits-download/">22.4 trillion digits of pi</a>.
%F A216638 a(n) = A014777(A000045(n)). - _Pontus von Brömssen_, Aug 31 2024
%e A216638 Fibonacci(4) is 3, 3 appears for the first time in decimals of Pi in position 9, so a(4) = 9.
%t A216638 (* Determine the decimal digits of Pi following the decimal point. *)
%t A216638 decimalPiDigits[n_] := First@RealDigits[Pi, 10, n, -1];
%t A216638 (* Find the position of first occurrence of 'sublist' in 'list', or Indeterminate if it doesn't occur. *)
%t A216638 firstPosition[sublist_, list_] :=
%t A216638   With[{p = SequencePosition[list, sublist]},
%t A216638    If[Length[p] == 0, Indeterminate, First@First@p]];
%t A216638 (* Find the first occurrence of the given digits in the decimal digits of Pi by calculating ever more digits of Pi, as needed. *)
%t A216638 findDigitSequenceInDecimalPiDigits[seq_] :=
%t A216638   First@NestWhile[
%t A216638     With[
%t A216638       {
%t A216638        numdigits = Max[1, 2*Last[#]] (*
%t A216638        How many digits will we calculate in this iteration? *)
%t A216638        },
%t A216638       {firstPosition[seq, decimalPiDigits[numdigits]], numdigits}
%t A216638       ] &,
%t A216638     {Indeterminate, 0},
%t A216638     Not@*IntegerQ@*First
%t A216638     ];
%t A216638 (* Find the first 30 entries. *)
%t A216638 Table[findDigitSequenceInDecimalPiDigits[
%t A216638   IntegerDigits@Fibonacci[n]], {n, 1, 30}]
%t A216638 (* _Sidney Cadot_, Feb 25 2023 *)
%Y A216638 Cf. A000045, A000796, A014777.
%K A216638 nonn,base
%O A216638 1,3
%A A216638 _Vicente Izquierdo Gomez_, Sep 11 2012
%E A216638 a(31)-a(40) from _Pontus von Brömssen_, Aug 31 2024