This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216638 #20 Aug 31 2024 08:30:42 %S A216638 1,1,6,9,4,11,110,93,86,130,11,1638,229,3056,268,1510,10118,11477,727, %T A216638 17711,83295,59861,22334,19659,301848,977089,59943,414086,536681, %U A216638 649382,2729036,68232754,17793212,33986473,695781,135830965,117951651,36978613,170243036,366567058 %N A216638 First appearance of the Fibonacci numbers in the decimals of Pi. %H A216638 Peter Trüb, <a href="https://pi2e.ch/blog/2017/03/10/pi-digits-download/">22.4 trillion digits of pi</a>. %F A216638 a(n) = A014777(A000045(n)). - _Pontus von Brömssen_, Aug 31 2024 %e A216638 Fibonacci(4) is 3, 3 appears for the first time in decimals of Pi in position 9, so a(4) = 9. %t A216638 (* Determine the decimal digits of Pi following the decimal point. *) %t A216638 decimalPiDigits[n_] := First@RealDigits[Pi, 10, n, -1]; %t A216638 (* Find the position of first occurrence of 'sublist' in 'list', or Indeterminate if it doesn't occur. *) %t A216638 firstPosition[sublist_, list_] := %t A216638 With[{p = SequencePosition[list, sublist]}, %t A216638 If[Length[p] == 0, Indeterminate, First@First@p]]; %t A216638 (* Find the first occurrence of the given digits in the decimal digits of Pi by calculating ever more digits of Pi, as needed. *) %t A216638 findDigitSequenceInDecimalPiDigits[seq_] := %t A216638 First@NestWhile[ %t A216638 With[ %t A216638 { %t A216638 numdigits = Max[1, 2*Last[#]] (* %t A216638 How many digits will we calculate in this iteration? *) %t A216638 }, %t A216638 {firstPosition[seq, decimalPiDigits[numdigits]], numdigits} %t A216638 ] &, %t A216638 {Indeterminate, 0}, %t A216638 Not@*IntegerQ@*First %t A216638 ]; %t A216638 (* Find the first 30 entries. *) %t A216638 Table[findDigitSequenceInDecimalPiDigits[ %t A216638 IntegerDigits@Fibonacci[n]], {n, 1, 30}] %t A216638 (* _Sidney Cadot_, Feb 25 2023 *) %Y A216638 Cf. A000045, A000796, A014777. %K A216638 nonn,base %O A216638 1,3 %A A216638 _Vicente Izquierdo Gomez_, Sep 11 2012 %E A216638 a(31)-a(40) from _Pontus von Brömssen_, Aug 31 2024