cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216646 a(n) = 1+2*(d1 + 1)*(d2 + 1)* … *(dk + 1), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2 A001567(n).

Original entry on oeis.org

769, 1729, 2113, 3025, 2961, 4481, 6145, 4321, 6481, 5625, 7169, 6841, 8361, 9289, 12289, 9729, 11265, 16129, 16281, 17065, 24769, 21761, 21249, 26641, 34561, 36289, 34049, 28081, 32257, 29745, 32833, 37889, 43345, 63361, 38025, 40609, 72577, 47433, 71169
Offset: 1

Views

Author

Marius Coman, Sep 12 2012

Keywords

Comments

It is notable how many primes, semiprimes, pseudoprimes, squares and multiples of 3 are in this sequence.
Primes obtained and the corresponding Fermat pseudoprime in the brackets: 769 (341), 2113 (645), 4481 (1729), 6481 (2465), 6841 (3277), 12289 (4371), 26641 (10585), 28081 (13747), 32257 (13981), 32833 (15709), 37889 (15841), 63361 (18705), 40609 (19951), 72577 (23001).
Semiprimes obtained and the corresponding Fermat pseudoprime in the brackets: 6145 (1905), 4321 (2047), 7169 (2821), 9289 (4369), 17065 (8321), 21761 (8911), 36289 (12801), 34049 (13741), 43345 (16705).
Pseudoprimes obtained and the corresponding Fermat pseudoprime in the brackets: 1729 (561).
Squares obtained and the corresponding Fermat pseudoprime in the brackets: 3025 = 5^2*11^2 (1105), 5625 = 3^2*5^4 (2701), 16129 = 127^2 (6601), 38025 = 3^2*5^2*13^2 (18721).
Multiples of 3 obtained and the corresponding Fermat pseudoprime in the brackets: 2961 = 3^2*329 (1387), 5625 = 3^2*625 (2701), 8361 = 3^2*929 (4033), 9729 = 3^2*1081 (4681), 3*3755 (5461), 16281 = 3^5*67 (7957), 21249 = 3^3*787 (10261), 29745 = 3^2*3305 (14491), 38025 = 3^2*4225 (18721), 47433 = 3*15811 (23377), 71169 = 3*23723 (25761).
The only numbers from the sequence above that are not into at least one of these categories (and the corresponding Fermat pseudoprime in the brackets) are 24769 = 17*31*47 (8481) and 34561 = 17*19*107 (11305).
An interesting correspondence with the function from the sequence A216404: with that one we obtain the pseudoprime 561 from the pseudoprime 1729 (2*a(n) + 1); with this one we obtain 1729 from 561 (a(n)). Another type of correspondence with that function: 2*a(n) + 1 = 769 for a(n) = 384 for that function (corresponding to pseudoprime 1905) while a(n) = 769 for this function (corresponding to pseudoprime 341).

Crossrefs