This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216648 #19 Jan 10 2015 11:09:31 %S A216648 2,12,52,56,212,216,232,240,852,856,872,880,920,936,944,976,992,3412, %T A216648 3416,3432,3440,3480,3496,3504,3536,3552,3688,3696,3752,3760,3792, %U A216648 3808,3888,3920,3936,4000,4032,13652,13656,13672,13680,13720,13736,13744,13776 %N A216648 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n). %C A216648 There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees. %H A216648 Alois P. Heinz, <a href="/A216648/b216648.txt">Rows n = 1..12, flattened</a> %F A216648 T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1. %e A216648 856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0). The encoded rooted tree is: %e A216648 . o %e A216648 . /|\ %e A216648 . o o o %e A216648 . | %e A216648 . o %e A216648 Triangle T(n,k) begins: %e A216648 2; %e A216648 12; %e A216648 52, 56; %e A216648 212, 216, 232, 240; %e A216648 852, 856, 872, 880, 920, 936, 944, 976, 992; %e A216648 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ... %e A216648 Triangle T(n,k) in binary: %e A216648 10; %e A216648 1100; %e A216648 110100, 111000; %e A216648 11010100, 11011000, 11101000, 11110000; %e A216648 1101010100, 1101011000, 1101101000, 1101110000, 1110011000, ... %e A216648 110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ... %p A216648 F:= proc(n) option remember; `if`(n=1, [10], sort(map(h-> %p A216648 parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end: %p A216648 g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq( %p A216648 [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose]( %p A216648 [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]) %p A216648 end: %p A216648 b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0 %p A216648 while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r %p A216648 end: %p A216648 T:= proc(n) option remember; map(b, F(n))[] end: %p A216648 seq(T(n), n=1..7); %Y A216648 First column gives: A080675. %Y A216648 Last elements of rows give: A020522. %Y A216648 Row lengths are: A000081. %Y A216648 Subsequence of A057547, A081292. %Y A216648 Cf. A061773, A216349, A216350, A216649. %K A216648 nonn,tabf %O A216648 1,1 %A A216648 _Alois P. Heinz_, Sep 12 2012