cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216650 Maximum length of each subsequence whose elements are the greatest prime divisors of the integers 2, 3, 4, ... in increasing order.

This page as a plain text file.
%I A216650 #20 Nov 09 2022 19:08:59
%S A216650 2,2,2,4,2,1,1,2,2,4,3,3,2,3,1,2,1,1,2,2,1,3,2,2,2,2,4,2,1,1,2,2,2,2,
%T A216650 2,1,2,3,1,3,3,1,2,5,1,2,2,2,2,1,3,2,2,2,3,2,1,3,1,1,3,2,2,3,3,2,3,1,
%U A216650 3,3,2,1,1,2,2,1,1,2,2,1,3,6,1,5,2,2,2
%N A216650 Maximum length of each subsequence whose elements are the greatest prime divisors of the integers 2, 3, 4, ... in increasing order.
%C A216650 Let gpf(m) = A006530(m) be the greatest prime factor of m and the subset E(n) = {m, m+1, ..., m+L-1} such that gpf(m) < gpf(m+1) < ... < gpf(m+L-1) where L is the maximum length of E(n) and n the index such that {E(1) union E(2) union ... } = {2, 3, 4, ...}.
%C A216650 See the examples for the structure of the subsequences of increasing prime divisors.
%C A216650 The growth of a(n) is very slow. See the following smallest values of m such that a(m) = n:
%C A216650 a(6) = 1, a(1) = 2, a(11) = 3, a(4) = 4, a(44) = 5, a(82) = 6, a(4672) = 7, a(23001) = 8, a(360896) = 9.
%H A216650 Michel Lagneau, <a href="/A216650/b216650.txt">Table of n, a(n) for n = 1..10000</a>
%F A216650 a(n) = A070087(n)-A070087(n-1) for n >= 2. - _Pontus von Brömssen_, Nov 09 2022
%e A216650 Subset 1: {2, 3} obtained with the numbers 2, 3 => a(1) = 2;
%e A216650 Subset 2: {2, 5} obtained with the numbers 4, 5 => a(2) = 2;
%e A216650 Subset 3: {3, 7} obtained with the numbers 6, 7 => a(3) = 2;
%e A216650 Subset 4: {2, 3, 5, 11} obtained with the numbers 8, 9, 10, 11 => a(4) = 4.
%p A216650 with(numtheory):p0:=2:it:=1:for n from 3 to 200 do: x:=factorset(n):n1:=nops(x):p:=x[n1]:if p>p0 then it:=it+1:p0:=p:else printf(`%d, `,it):it:=1:p0:=p:fi:od:
%Y A216650 Cf. A006530, A070087, A216651.
%K A216650 nonn
%O A216650 1,1
%A A216650 _Michel Lagneau_, Sep 12 2012