This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216652 #17 Jul 24 2020 21:59:50 %S A216652 1,1,1,2,1,2,1,4,1,4,6,1,6,6,1,6,12,1,8,18,1,8,24,24,1,10,30,24,1,10, %T A216652 42,48,1,12,48,72,1,12,60,120,1,14,72,144,120,1,14,84,216,120,1,16,96, %U A216652 264,240,1,16,114,360,360,1,18,126,432,600,1,18,144,552,840 %N A216652 Triangular array read by rows: T(n,k) is the number of compositions of n into exactly k distinct parts. %C A216652 Same as A072574, with zeros dropped. [_Joerg Arndt_, Oct 20 2012] %C A216652 Row sums = A032020. %C A216652 Row n contains A003056(n) = floor((sqrt(8*n+1)-1)/2) terms (number of terms increases by one at each triangular number). %H A216652 Alois P. Heinz, <a href="/A216652/b216652.txt">Rows n = 1..500, flattened</a> %H A216652 B. Richmond and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/BF01827930">Compositions with distinct parts</a>, Aequationes Mathematicae 49 (1995), pp. 86-97. %F A216652 G.f.: Sum_{i>=0} Product_{j=1..i} y*j*x^j/(1-x^j). %F A216652 T(n,k) = A008289(n,k)*k!. %e A216652 Triangle starts: %e A216652 [ 1] 1; %e A216652 [ 2] 1; %e A216652 [ 3] 1, 2; %e A216652 [ 4] 1, 2; %e A216652 [ 5] 1, 4; %e A216652 [ 6] 1, 4, 6; %e A216652 [ 7] 1, 6, 6; %e A216652 [ 8] 1, 6, 12; %e A216652 [ 9] 1, 8, 18; %e A216652 [10] 1, 8, 24, 24; %e A216652 [11] 1, 10, 30, 24; %e A216652 [12] 1, 10, 42, 48; %e A216652 [13] 1, 12, 48, 72; %e A216652 [14] 1, 12, 60, 120; %e A216652 [15] 1, 14, 72, 144, 120; %e A216652 [16] 1, 14, 84, 216, 120; %e A216652 [17] 1, 16, 96, 264, 240; %e A216652 [18] 1, 16, 114, 360, 360; %e A216652 [19] 1, 18, 126, 432, 600; %e A216652 [20] 1, 18, 144, 552, 840; %e A216652 T(5,2) = 4 because we have: 4+1, 1+4, 3+2, 2+3. %p A216652 b:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1, %p A216652 `if`(k<1, 0, b(n, k-1) +b(n-k, k)))) %p A216652 end: %p A216652 T:= (n, k)-> b(n-k*(k+1)/2, k)*k!: %p A216652 seq(seq(T(n, k), k=1..floor((sqrt(8*n+1)-1)/2)), n=1..24); # _Alois P. Heinz_, Sep 12 2012 %t A216652 nn=20;f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[ Sum[Product[j y x^j/(1-x^j),{j,1,k}],{k,0,nn}],{x,0,nn}],{x,y}],1]]//Flatten %Y A216652 Cf. A003056, A008289, A072574, A097910. %K A216652 nonn,tabf %O A216652 1,4 %A A216652 _Geoffrey Critzer_, Sep 12 2012