cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216673 Total number of solutions to the equation x^2 + k*y^2 = n with x >= 0, y >= 0, k > 0, or 0 if the number is infinite. (Order does not matter for the equation x^2 + y^2 = n).

Original entry on oeis.org

0, 2, 2, 0, 3, 3, 3, 5, 0, 4, 4, 6, 6, 4, 4, 0, 7, 7, 6, 8, 7, 6, 5, 8, 0, 6, 8, 10, 9, 6, 7, 11, 10, 8, 6, 0, 11, 7, 7, 12, 12, 7, 9, 11, 13, 8, 7, 13, 0, 10, 9, 16, 12, 12, 9, 12, 14, 10, 9, 12, 15, 8, 11, 0, 15, 10, 11, 16, 13, 11, 9, 19, 18, 10, 11, 18, 13
Offset: 1

Views

Author

V. Raman, Sep 13 2012

Keywords

Comments

If the equation x^2+y^2 = n has got two solutions (x, y), (y, x) then they will be counted only once.
No solutions can exist for the values of k > n.
This sequence differs from A216504, since this sequence gives the total number of solutions to the equation x^2+k*y^2 = n, whereas the sequence A216504 gives the number of distinct values of k for which a solution to the equation x^2+k*y^2 = n can exist.
Some values of k can clearly have more than one solution.
For example, x^2+k*y^2 = 33 is satisfiable for
33 = 1^2+2*4^2.
33 = 5^2+2*2^2.
33 = 3^2+6*2^2.
33 = 1^2+8*2^2.
33 = 5^2+8*1^2.
33 = 4^2+17*1^2.
33 = 3^2+24*1^2.
33 = 2^2+29*1^2.
33 = 1^2+32*1^2.
33 = 0^2+33*1^2.
So for this sequence a(33) = 10.
On the other hand, for A216504, there exist only 7 different values of k for which a solution to the equation mentioned above exists.
So A216504(33) = 8.

Crossrefs

Cf. A217840 (a variant of this sequence, when the order does matter for the equation x^2+y^2 = n, i.e. if the equation x^2+y^2 = n has got two solutions (x, y), (y, x) then they will be counted separately).

Programs

  • PARI
    for(n=1, 100, sol=0; for(k=1, n, for(x=0, n, if((issquare(n-k*x*x)&&n-k*x*x>=0&&k>=2)||(issquare(n-x*x)&&n-x*x>=0&&k==1&&x*x<=n-x*x), sol++))); if(issquare(n),print1(0", "),print1(sol", "))) /* V. Raman, Oct 16 2012 */

Extensions

Ambiguity in name corrected by V. Raman, Oct 16 2012